Programming

Plan for the rest of the semester:

We will be introducing various new elements of Python and using them to solve increasingly
interesting and complex problems.

We saw earlier that computers can (1) input, (2) output, (3) memory (store information), (4) do
arithmetic and symbolic processing, and (5) control.

Implication: a program is a sequence of StateMeNtsS (commands and functions) that “speak” to
one or more of those capabilities.

The examples we have seen till now used the command shell mode. We enter one statement or
expression, hit <enter> and Python evaluates it for us immediately.

We will start to write programs and get Python to execute (run) them for us.
So ... we (1) write then (2) execute.
When we write a program, we

e create a text file
e enter a sequence of statements
e when done, we save the file with a .py extension.

We can write Python programs using any text editor. We will use IDLE (which automatically saves
the file with a ‘.py’ extension.

cos 74 Python Shell s B
[File] Edit Shell Debug Options Windows Help

— S—— -

T

27

Paste
(default, Sep
Mew Window Ctrl+M
Open... Ctrl+0 " " . "
Recent Files + !ht d credits
Open Module... Alt+M
Class Browser Alt+C
Path Browser
Save Ctrl+5
Save As... Ctrl+5hift+5
Save Copy As.. Alt+5hift+5
Print Window Ctrl+P
Close Alt+F4
Eaort Ctrl+Q

Example: “Hello World” is traditionally the first program everyone writes.
How do we do it?

Answer:
1. Create a new file and type the print command that we saw before.

e
I

File Edit Format Run Options Winde
print ("Hello World!"™)

Pressing F5 will RUN the program.

74 Save Before Run or Check [

Source Must Be Saved
QK to Save?

Cancel

Type the file name that you want to call the program and Save.

EINERT e
Savein: I |, Python32 j L |‘=_°F Ef-

2= Mame . Date medified Type =

.r;} J h 1/20/201411:15 PM File fol
Recent Places - —Pyeathe_ ?E

|/ demos 2/18/2013 8:33 PM File fol
-—I . DLLs 1/12/201211:43 PM File fol
Desl::to}:: . Doc 1/12/201211:44 PM File fol
e . grades 10/25/20121:48 PM File fol
= L idlexlib 2/18/20136:35 PM File fol
Libraries . include 1/12/201211:43 PM File fol
&u L Lib 1/12/201211:43 PM File fol
- } libs 1/12/201211:43 PM File fol
s | license 2/18/20136:33PM File fol
@ . scripts 2/18/20136:33 PM File fol
Netoric Lot 1/12/201211:44 PM File fol

. ||. Tools o lﬂlfl?_ﬂll 11:43 PM Fi|Ef:l| i

File name: Ihello.p'_.' j Save I
Save as type: IPython files (" py.” pyw) ;l Cancel |

As soon as you Save, the program will run and the result will appear in the interactive shell.

28

7% Python Shell
File Edit Shell Debug Option

Python 3.2.2 (def:
32

Type "copyright",
Fr> S=============
>

Hello World!

b

Congratulations! You just wrote your first program!

Using comments in Python

You must admit that this one was pretty simple. Not all programs are that straightforward. As programs
get more complex it is often helpful to annotate the various parts of the program so that someone

reading it (even you) can figure out what is happening. We do this using “COmments”, which are
indicated in Python by the hash symbol “#”.

They can be of two forms:

They can either be on a line of their own:

My first program!
print ("Hello World!™)

or at the end of a program statement:
print ("Hello World!™)# Just wrote my first program!

In either case, the Python interpreter ignores the comment. That is the comment doesn’t “execute” the
comment. It is just there to help the reader of the program understand what is going on in the code.
This implies that we shouldn’t comment on things that are obvious like:

print ("Hello World!™)# This is a print statement!

29

New topic: We won’t get anywhere interesting without

Variables

Variables allow us to associate a name with a value so that we can use it later on.

Some examples:

X=

These are examples of 2sSiIgnMent statements. They have the form:

variable name = expression

Python evaluates the expression on the right of the = and associates the value
obtained with the name on the left.

So in this program:
x=1

y=2

Z=X+y

print(x,y,z)

What will this look like in memory?

Trace the program as it runs.

30

Aside: Using the Python emulator. It will allow us to step through a program and see what happens in
the memory as each step is executed.

The emulator may be reached at: http://pythontutor.com/ or from the lecture web page.

L EA RN programming by visualizing code execution

Online Python Tutor is a free educational tool created by Philip Guo that helps students overcome a
fundamental barrier to learning programming: understanding what happens as the computer executes each
line of a program's source code. Using this tool, a teacher or student can write a Pvthon program in the Web
browser and visualize what the computer is doing step-by-step as it executes the program.

As of Dec 2013, over 500,000 people in over 165 countries have used Online Python Tutor to
understand and debug their programs, often as a supplement to textbooks, lecture notes, and online
programming tutorials. Over 6,000 pieces of Python code are executed and visualized every day.

Users include self-directed learners, students taking online courses from Coursera, ed¥, and Udacity, and
professors in dozens of universities such as MIT, UC Berkeley, and the University of Washington.

Start using Online Python Tutor now

As a demo, here is a visualization showing a program that recursively finds the sum of a (cons-styvle) linked
list. Click the “Forward” button to see what happens as the computer executes each line of code.

. o i Frames Objects
— def listSum(numbers):

if not numbers:
return 0

else:
(£, rest) = numbers
return £ + listSum(rest)

myList = (1, (2, (3, None)))
total = listSum(myList)

Edit code

= Back | Step 1 of 22 | Forward »

line that has just executed
= next line to execute

Code visualized with Online Python Tutor

The Python emulator will be very helpful in debugging.
What is debugging?

Answer:

31

http://pythontutor.com/

When we run it we get the following:

- Frames Objects
y=2 Global frame P int
Z=xty o .f"/ 1
- print(x,v,z) y [it
Edit code zZ [‘
\\% int
3
| << First | | <Back | Step 4 of 4 | Forward > | | Last »> |
has just executed
to execute
Notice how the variables X, y, and z point to their respective values.
Python has four other forms of assignment.
1. Extended assignment.
X=y=z=5
= Frames Objects
x=y=z=5
. Global frame int
Edit code _,-—7__
=ML LUV 5= .1_/-— 5
z | 7
y ./’//
Program terminated Forward > | ;iLars.t >> | X /

2. Assignment to tuples (also called “unpacking”).

x,y,z=1,2,3
Frames Objects

Xy M Z=E 523]
. = d int

Edit code Glcbal frame g T

x |o

) Y [®&— . Int
< | Program terminated | Forward > | | Last => | e 2
:d \\ int
3

32

3. Augmented assignment statement.

The Python documentation puts it like this:

Augmented assignment is the combination, in a single statement, of a binary operation and an
assignment statement:

For example:

Instead of writing
X=x+1

we can write
X+=1

where both accomplish the same thing, viz. increment x by one. More generally we have
X+= expression

which increments x by the value of the expression.

We also have the following augmented assignment operators:

* k=

Which do, analogous to +=, what you would expect.

4. There is also the “walrus” assignment operator (from 3.8 and up)

>>> print (a=7)
Traceback (most recent call last):

File "<pyshell#1>", line 1, in <module>

print (a=7)

TypeError: 'a'
>>> a=7
>>> print(a:=7)
7
>>> |

is an invalid keyword argument for print/()

33

Input

How do we get input from the keyboard to use in our program?

name=1input (|
print ("Hellinput ([prompt]) -> string

Question:
What will the following program print?

print(*Hello")
print(*My name is <put your name here>") #insert your name

Problem:

Rewrite the above program using only one print statement

Write a program to ask a “user” to type their name. Then have your program greet them.

name=input ("Please enter your name: ")

Now what??? Write a program to generate the following output. Of course, the entered name should
appear instead of “Jerry” (unless you entered “Jerry” ... ©)

>
please enter your name:Jerry
Hello Jerry !

>>> |

34

Answer:

What is going on in the computer to make your program execute correctly?

Problem:

Modify the above program so that the “!” follows the name without an intervening blank.

>
please enter your name:Jerry
Hello Jerry!

>0

Answer

35

Problem:

Write a program to prompt the user for two numbers. Your program will then print the sum.

>
Please enter the first number: 4
Please enter the second number: 5
The sum of 4 and 5 1is 9.

>>> |

Answer:

Problem:

Modify your answer to the above problem so that we get the following:

s

Please enter the first number: 5

Please enter the second number: 7

The sum of 5 and 7 1s 12.

The difference of 5 and 7 1s -2.

The product of 5 and 7 is 35.

The integer division of 5 and 7 is 0.

The float division of 5 and 7 1is 0.7142857142857143.
The remainder of dividing 5 by 7 1is 5.

>>> |

36

Answer:

Problem:

Write a program to ask the user their age in years. Your program should calculate and print their age in
seconds.

Answer:

Problem:

Write a program that asks the user to enter a temperature in Fahrenheit. Your program should calculate
and print the temperature in Centigrade.

37

We can translate between Fahrenheit and Celsius according to the following formulas:
°Cx 9/5+32=°F
(°F - 32) x 5/9=°C
Problem:

Given a temperature in Centigrade, write the assignment statement to calculate the temperature in
Fahrenheit. Now, do it the other way, i.e. go from Fahrenheit to Celsius.

Problem — Rounding a number:

What does it mean to round a number? Say x is a floating-point number (i.e., contains a decimal point).
If its fractional part is .5 or greater then we “round” x to the next highest integer. But if the fractional
part is less than .5, we “round down” to x. So, rounding 34.56 =»35 and 34.48=» 34. Notice that when
we round a float, we get an int.

Write an assignment statement to convert a floating point number X, to its rounded value y.

Do this in two ways: (1) without using the built-in “round” function, and (2) once with. Here is how
the Python documentation describes the round function.

round(X[, n])

Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it
defaults to zero.

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives
2. 67 instead of the expected 2. 68. This is not a bug: it’s a result of the fact that most decimal
fractions can’t be represented exactly as a float. See Floating Point Arithmetic: Issues and
Limitations for more information.

Answer:

38

Note that the first method works correctly for positive numbers but has different behavior for negative
numbers compared to the round function. The round function rounds to the nearest even number when the
number is exactly halfway between two integers.

For example:
Consider the floating-point number -2.5. We want to round this number to the nearest integer.

1.Using int(x + 0.5):

1. When we apply this method to -2.5, we add 0.5 to the number, resulting in -2.0. Then, applying int()
to -2.0 gives -2.

2. S0, -2.5 becomes -2.

2.Using round(x):

1. The round function in Python rounds half to even (also known as "bankers’ rounding"). This
means that when a number is exactly halfway between two integers, it rounds to the nearest even
integer.

2. Inthis case, -2.5 is exactly halfway between -2 and -3. According to Python's rounding rule, it
rounds to the nearest even number, which is -2.

So, round(-2.5) also gives -2.

In this particular example of -2.5, both methods yield the same result, -2. However, the difference becomes
apparent with numbers like -1.5.

1.Using int(x + 0.5):
. For -1.5, adding 0.5 results in -1.0. Using int() on -1.0 yields -1.
2.Using round(x):
1. round(-1.5) will round to the nearest even number, which is -2 in this case.

Thus, for -1.5, the first method gives -1, while the round function gives -2. This demonstrates the different
behaviors of the two methods when dealing with negative numbers that are exactly halfway between two
integers. The int(x + 0.5) method always rounds away from zero, while the round function employs bankers'
rounding.

What about for positive numbers?
Well, let x=2.5.
3.Using int(x + 0.5):
. For 2.5, adding 0.5 results in 3.0. Using int() on 3.0 yields 3.

4.Using round(x):
1. round(2.5) will round to the nearest even number, which is 2 in this case.

39

Problem:

Write a program that asks the user to enter an integer. Your program should “echo” the input and print
True if the number is even and False if the number is odd.

Problem:

Write a program that asks the user to enter an integer. Your program should “echo” the input and print
EVEN if the number is even and ODD if the number is odd.

40

Problem:
Write a program that asks the user to enter two integers. Your program should:

e “Store” the values entered in variables a and b.

e “Printaandb.

e “Swap” the values in a and b, so that what was in a is now in b and vice versa.

e Printaandb. At this point the values should be the reverse of what you printed above.

Answer:

Will this one work?

How about this?

Note: Python allows a more direct way to do this using “unpacking.” Here is how:

How come this works?

41

Problem:

Look at the following:

>

Please enter the number of hours that you worked: 5
Please enter your hourly rate: 10

You earned 50.0 for 5.0 work at 10.0 dollars/hour.
> RESTART
>>>

Please enter the number of hours that you worked: 56
Please enter your hourly rate: 45

You earned $ 2520.0 for 56.0 work at 45.0 dollars/hour.
> RESTART
>

Please enter the number of hours that you worked: 45
Please enter your hourly rate: 67

You earned $ 3015.0 for 45.0 work at $ 67.0 dollars/hour.
>>> RESTART
>

Please enter the number of hours that you worked: 67
Please enter your hourly rate: 98

ﬁou earned $6566.0 for 67.0 work at $98.0 dollars/hour.
>

Write a program that will calculate a worker’s pay given the number of hours worked and the rate per
hour. Both values could be floats, for example if someone worked 35.5 hours at a rate of $35.75 an
hour. Work through the example above.

How can we format the output?

Let’s see three ways.

42

1. The Format function
This function takes two arguments:

e The value that you want printed

e The specification of the format to use — for example “field width”, number of digits after the
decimal point, etc.

The syntax is:
format(value to be printed, format specification)
Here is the Python documentation description:

format(value[, format_spec])

Convert a value to a “formatted” representation, as controlled by format_spec. The
interpretation of format_spec will depend on the type of the value argument, however there is a
standard formatting syntax that is used by most built-in types: Format Specification Mini-

Language.

I ne general 10rm Ot a Stanaara rormar speciner 1s:

format spec ::= [[£fill]align][sign] [#1[0] [width] [,] [.precision] [type]

£ill = <a character other than '}'>

align = II<II | (I>" | ":H | man

sign = II+II | m_mn | " n

width = integer

precision = integer

type = llbll | "C" | "d" | l!ell | IIEII | w f(l | "E‘" | "'g n | IIGII | lln(l | "O" | "S n | IIXII | IIX(I | "%"

What in the world does this mean???
We will look at some of the most common ones.
Examples

Formatting floating point numbers:

B

>>> print (format (123456.789,'.2£"))
123456.79

>>> print (format (123456.789,'20.2f"))

123456.75
>>> print (format (123456.789,'20,.2£"))
123,456.79
>>> print (format (123456.789,'e"))
1.234568e+05
>>> print (format (123456.789,'20.2e"))
1.23e+05
=

43

What does the “+” specify?

gt gy
>>> print (format (123456.789, "+20.2f"))
+123456.79
>>> print (format (123456.789, '-20.2£"))
123456.79

T e T

Formatting integers:

>>> print (format (123456, "20d4"))
123456

>>> print (format (123456, "<20d"))

123456

>>> print (format (123456, '>20d4"))
123456

>>> print (format (123456, "~20d4"))

123456
>

Formatting strings:

gy
>>> print (format ('abcd', "20s"))
abcd
>>> print (format ('abcd', '<20s5"))
abcd
>>> print (format ('abed', '>205"))
abcd
>>> print (format ('abcd', '~205"))
abcd

FEE

44

The format is used to control the formatting of individual items.

2. For more complex string formatting, you can use f-strings:

X =123.456

f'Value is {x:0.2f}' # 'Value is 123.46'
f'Value is {x:10.4f}' #'Valueis 123.4560'
f'Value is {2*x:*<10.2f}' # 'Value is 246.91****'

How does it work?

Within an f-string, text of the form {expr:spec} is replaced by the value of format(expr, spec).
expr can be an arbitrary expression as long as it doesn’t include {, }, or \ characters.

Parts of the format specifier itself can optionally be supplied by other expressions.
For example:

y = 3.1415926

width = 8

precision=3

r = f{y:{width}.{precision}f}' #r=" 3.142'

If you end expr by =, then the literal text of expr is also included in the result.

For example:

X =123.456

f'{x=:0.2f}' # 'x=123.46'
f{2*x=:0.2f} #'2*x=246.91'

If you append !r to a value, formatting is applied to the output of repr().
If you use !s, formatting is applied to the output of str().
For example:

f{x!r.spec} # Calls (repr(x).__format__('spec'))
f'{x!s:spec} # Calls (str(x).__format__(‘spec'))

45

For example:

f{x!r:spec} # Calls (repr(x).__format__('spec'))
f{x!s:spec}’ # Calls (str(x).__format__('spec’))

So ... what’s the difference between str and repr?

repr gives us more information that is helpful in debugging.

Although str() and repr() both create strings, their output is often different. str() produces the
output that you get when you use the print() function, whereas repr() creates a string that you type
into a program to exactly represent the value of an object. For example:

>>> s = 'hello\nworld'

>>> print(str(s))

hello

world

>>> print(repr(s))

‘hello\nworld'

>>>

When debugging, use repr(s) to produce output because it shows you more information about a
value and its type.

3. As an alternative to f-strings, we can use the .format() method of strings:
x =123.456
'Value is {:0.2f}' .format(x) # 'Value is 123.46'
‘Value is {0:10.2f}" .format(x) #'Value is 123.4560'
‘Value is {val:<*10.2f}' .format(val=x) # 'Value is 123.46****'
With a string formatted by .format(), text of the form {arg:spec} is replaced by the value of format(arg, spec).

In this case, arg refers to one of the arguments given to the format() method. If omitted entirely, the arguments are
taken in order.

For example:
name ='IBM'
shares = 50

price =490.1

r ='{:>10s} {:10d} {:10.2f}".format(name, shares, price)
this will produce r =" IBM 50 490.10'

see “What is the difference between __str___and __repr___in Python?”
for an excellent extended explanation.

46

https://fpy.li/1-5

arg can also refer to a specific argument number or name.

For example:

tag="p'
text = 'hello world'

r = '<{0}>{1}</{0}>".format(tag, text) # r ='<p>hello world</p>'
r = '<{tag}>{text}</{tag}>".format(tag="p', text="hello world’)

Unlike f-strings, the arg value of a specifier cannot be an arbitrary expression, so it’s not quite as expressive.
However, the format() method can perform limited attribute lookup, indexing, and nested substitutions.
For example:
y = 3.1415926
width = 8
precision=3
r = 'Value is {0:{1}.{2}f} .format(y, width, precision)
d={
‘name": 'IBM',
'shares': 50,

‘price’: 490.1

}
r = '{O[shares]:d} shares of {O[name]} at {O[price]:0.2f}".format(d)
r ='50 shares of IBM at 490.10'

47

Problem:

Let’s modify the payment problem above so that we now get the following:
Please enter the number of hours that you worked: 45.6
Please enter your hourly rate: 56.7

You earned 52585.52 for 45.6 hours of work at $56.70/hour.
=

Answer:

48

Problem

Write a program to provide change in coins.

Input

Have your program ask the user to input some amount of money.

Output

Your program should output the minimum number of coins required to render the amount entered
into coins. The coins are half-dollars, quarters, dimes, nickels and pennies.

Your program should also list how many of each coin needs to be provided. Each denomination on its own
line, starting with half-dollars.

49

50

Problem: Salary Calculation (no if statements)

Write a program that prompts your user for
1. the number of hours worked and
2. the hourly rate,
and calculates the amount payable given the entered values.
Output
Your program should output three lines:
1. “Straight pay” = the amount owed to worker for work less than or equal to 40 hours. 2. “Overtime pay”
= the amount owed to the worker for work done after 40 hours 2. “Total pay” =the sum of 1 and 2 above.
Assumptions

The normal workweek is 40 hours.

If the worker worked forty hours or less, they are compensated at the rate times the number of hours worked.

If the worker worked more than forty hours, any hours worked beyond 40 is compensated at “time an-a-half.”
“Time-an-a-half” means 1.5 times the 40-hour rate. For example, if someone works for 50 hours at $10/hr they earn
40*10+10*15 =$550.

51

New topic
Recall:

Input

Output

Memory

Arithmetic — symbolic manipulation and evaluation

Control

orwdPE

We have seen examples of 1 — 4.
What about ...

Input
Output

Memory
. Arithmetic — symbolic manipulation and evaluation

5. Control

el A

We have seen a simple example of control. Python simply executes one statement after another from
the first statement of the program to the last. However, sometimes we want to execute statements

conditionally.

52

To do this we use the

If statement

There are three forms. Here is the first..

age=int (input ("What is your age: "))
age > 99:
print ("Very funny.")
minutes = age * 365 * 24 * 60
print ("You are ",minutes, " minutes old.")

When the above program is run (twice) we get:

>

What is your age: 789

Very funny.

You are 414698400 minutes old.

>

What is your age: 45

You are 23652000 minutes old.
>>> |

The syntax (form) of the if statement is:

if <Boolean expression> .
one or more statements (called a code block)

According to the Python documentation, a code block:
A block is a piece of Python program text that is executed as a unit.
The semantics (meaning or interpretation) is:

1. Evaluate the Boolean expression.
2. Ifits value is True then execute the indented code block, and then continue on with the

statement after the if.
3. Ifits value is False then simply skip the indented code block and continue with the statement

after the if.

53

Problem:

Write a program that inputs a number and determine if the number is even or odd.

=

Please enter an integer: &8
68 13 even.

>r» S==========================
>

Please enter an integer: €7

67 1s odd.

>>> |

Do this in two ways. (1) Using two if statements. (2) Using only one if statement and no “fancy”
Boolean expressions.

Answer:

54

Problem:
Write a program that asks for a number, 1, 2, or 3.

e Ifalisentered print the color is red!

e Ifa2isentered print the color is green!

e Ifa3isentered print the color is blue!

e |f the number entered is none of those, print ERROR!

Answer

55

Problem:

e Ifnisinthe range 1-10, print the color is red!

e If nisin the range 1-10, print the color is red!

e If nisin the range 11-20, print the color is blue!

e Ifnisin the range 21-30, print the color is green!

e |If the number entered is none of those, print ERROR!

Answer:

If statement — second form

Example.

n=int (input ('Please enter an integer: '))
ns2==0:
print(n,'is even.')

print(n, "is odd.")

The syntax (form) of this if statement is:

if <Boolean expression> .

one or more statements (called a code block)
else:
one or more statements (called a code block)

The semantics (meaning or interpretation) is:

1. Evaluate the Boolean expression.

2. Ifits value is True then execute the indented code block, and then continue on with the
statement after the if.

3. Ifits value is False then execute the indented code block statement after the else.

Note: The indentation is important in Python. If the blocks in the “if statement” were not indented to
the right of the “if”, Python would call you out on a syntax error.

How much to indent? Python doesn’t care, but the accepted style in the “community” is four spaces.

Problem:

56

Write a program that inputs two different integers and prints out the larger of the two.

Answer:

Problem:
Write a program that inputs three different integers and prints out the largest of the three.

Answer:

57

Problem:
Write a program that inputs five different integers and prints out the largest of the five.

Answer:

Problem:

Re-write the following if statement so that it is syntactically correct; then figure out what will be
printed. Test your answer by running the reformatted code.

I n
~N 00 ©

X
y
z
if x>9:ify>8: print ("x>9 andy > 8") else: if z>=7: print("x <= 9 and z >= 7") else: print("x <=9 and z < 7")

In many programming languages the general rule regarding” nested” if statements (an if in the
block of another if) is that the “else” goes with the closest “if” that has no “else.”

AnSwer:

58

Like C++, Python also has a Ternary Operator (conditional operator)
It’s like an if else.
int main() {

int number = -4;

string result;

/I Using ternary operator

result = (number > 0) ? "Positive Number!" : "Negative Number!";

cout << result << endl;
return O;

}
In python it looks like this:

<variable> = <true_value> if <condition> else <false_value>
Here’s an example:
a = int(input())

b = int(input())
check which is smaller

x=aifa<belseb

print("Smaller Number is: ",x)

The following strange syntax also works with tuples and lists:
(false_value,true_value)[condition]

Can you figure out what’s happening?

Take input of two numbers

a = int(input())

b = int(input())

check which is smaller using tuples

(if false,if true)[condition]
print("Smaller Number is: ",(b,a)[a<b])
print("Smaller Number is: ",[b,a][a<b])

59

if statement — third form

n=int (input ('Please enter an integer between 1 and 5: "))

n==1:

print ('Red!")
n==2:

print ('Green!')
n==3:

print ('Blue!")
n==4:

print ('Indigo!")
n==5:

print ('Violet!")

print ("ERROR!")

The syntax (form) of this if statement is:

if <Boolean expression>
one or more statements (called a code block)

elif <Boolean expression> :
one or more statements (called a code block)

elif <Boolean expression> :
one or more statements (called a code block)

else:
one or more statements (called a code block)

Note: The final “else” is optional.
Question: How many “elif”’s do you need?

Answer: As many as you need for the problem that you are solving.

60

The semantics (meaning or interpretation) is:

1. Starting at the first if, find the first Boolean expression that evaluated to True.
2. If one is found, execute the block of statement associated with that if, then exit the whole “if
construct” and continue the program with the statement following it.
3. If no Boolean expression evaluates to True
a. If there is an “else clause”, evaluate it and execute the block of statement associated with
it. Then continue the program with the statement following the else cause.
b. If there is no “else clause”, then exit the whole “if construct” and continue the program
with the statement following it.
Problem:

Write a program using “if — elif” that converts a numerical score to a letter grade according to the
following scheme:

If the score is 90 or above, the grade is A.
If the score is between 80 and 90 the grade is B.
If the score is between 70 and 80 the grade is C.
If the score is between 60 and 70 the grade is D.
If the score is less than 60, the grade is F.

In the above, between x and y means starting with x and less than y.

The program prints the score and the associated letter grade.

If the score entered is not in any of the above ranges, the program prints the score and the message
“Score out of Range!”.

Answer:

61

Problem:

We will say that a number is a palindrome if it reads the same forwards and backwards. So:

e 1221 is a palindrome
e 6556 is a palindrome
e 1234 s not a palindrome

Write a program that inputs a four digit integer and determines if the number is a palindrome or not.
Your program should reject (politely) any input not in the appropriate range.

Answer:

62

Problem:

Write a program that inputs a three digit integer n (no zero in the units position) and returns the digits
of n in reverse order. Your program should reject (politely) any input not in the appropriate range.

For example if you enter the integer 123, the program should output the digits 321 one next to the
other.

Answer:

Problem:

Write a program that inputs a three digit integer n (no zero in the units position) and returns the
integer made up of the digits of n in reverse order. Your program should reject (politely) any input not
in the appropriate range.

For example if you enter the integer 123, the program should output the integer 321 (not just

Answer:

63

