

55

New Topic

Repetition and Loops

Additional Python constructs that allow us to effect the (1) order and (2) number of times that

program statements are executes.

These constructs are the

1. while loop and

2. for loop.

Recall:

1. Input

2. Output

3. Memory

4. Arithmetic – symbolic manipulation and evaluation

5. Control – we have already seen “straight line execution, and if statement.

We have seen a simple example of control. Python simply executes one statement after another

from the first statement of the program to the last i.e. straight line execution. In we have seen how

Python lets us execute statements conditionally. So if a Boolean condition is met, a given block

of statements is executed once, otherwise it is not.

But … what about the case that we want to execute the block multiple times, as long as the Boolean

condition is True? We can do this by using a

while loop.

Example:

Write a program that prints the numbers 1 – 10, one per line.

56

Solution: Use a while loop.

The syntax (form) of the while statement is:

while <Boolean expression> :

 one or more statements (called a code block)

The semantics (meaning or interpretation) is:

Upon encountering the while statement:

1. Evaluate the Boolean expression

2. Repeat the associated block as long as the Boolean expression is True

3. Exit the while loop as soon as the Boolean expression evaluates to False.

Definition: This process of repeating one or more statements is called iteration.

Problem:

Write a program that asks the user for a positive integer n. It then prints the numbers 1 through n, one

per line.

Answer:

Problem:

57

Write a program that asks the user for a positive integer n. It then prints the numbers n down to 1,

one per line.

Answer:

Problem:

Write a program that asks the user for a positive integer n (>= 2). It then prints the even numbers in

the range 1 to n, five per line.

Answer:

Problem:

58

Write a program that asks the user for a positive integer n. Print a triangle of “stars”(= “*”) like

in the example below.

Answer:

Problem:

Now do this one.

Problem:

59

Write a program that asks the user for a positive integer n. Calculate and print the sum of the

integers 1 through n.

Answer:

Problem:

Write a program that asks the user for a positive integer n. Calculate and print the product of the

integers 1 through n.

Answer:

Problem:

Write a program that asks the user for a positive integer n. Calculate and print the sum of the

odd integers in the range 1 through n.

Answer:

Problem:

60

Write a program to request and validate a password from your user. A valid password

will be any two digit integer, both digits of which are even.

Give the user three chances to enter a correct password.

• At each incorrect attempt, print “Invalid password. Try again”

• If the password entered is correct print “Correct! You may access the system.” Exit the

program.

• If the password entered is incorrect print “Too many invalid attempts. Please try again

later.”

Answer:

Problem:

61

Write a program that asks the user for a positive integer n where the right-most digit is not a

zero. Print out the digits of n from right to left – one next to the other. So if the input is 123 your

program will print out the digits 3,2,1 next to each othergiving 321.

Answer:

Problem:

Write a program that asks the user for a positive integer n where the right-most digit is not a

zero. Construct and output the integer whose digits are the reverse of those in n.

For example, if n has the value 123, then you need to construct the integer 321. Note you are not

just printing the digits of n in reverse order; you are actually constructing the new integer.

Answer:

1. What is the algorithm (method)?

62

2. Write the code.

Problem:

Recall the definition of a prime number:

An integer greater than one is called a prime number if its only positive divisors (factors) are one

and itself.

Write a program that inputs a positive integer n and determines if n is prime or composite (i.e.

not a prime).

Answer:

We now look at the second loop structure in Python, the

for loop

Example:

Write a program that prints the numbers 0 – 10, one per line.

63

Answer:

This is the simplest usage of the for statement. It lets you iterate over a sequence of numbers. In

the example above, the sequence starts implicitly at 0 and goes up to, but not including 11.

The syntax (form) of this form of the for statement is:

for <some variable> in range(…) :

 one or more statements (called a code block)

The semantics (meaning or interpretation) is:

• The variable after the “for” takes on each value in the “range” successively.

• That value may be used in the block that is the body of the for statement.

64

Question: What about the range function?

Here are some examples:

and

range(…) has the following syntax:

range([start value,] end value [,step])

and the following semantics:

Ranges (from Python help)

The range type represents an immutable sequence of numbers and is commonly used for looping

a specific number of times in for loops.

class range(stop)

class range(start, stop[, step])

mk:@MSITStore:C:/Users/waxman/AppData/Local/Programs/Python/Python39/Doc/Python395.chm::/library/stdtypes.html#range
mk:@MSITStore:C:/Users/waxman/AppData/Local/Programs/Python/Python39/Doc/Python395.chm::/reference/compound_stmts.html#for

65

The arguments to the range constructor must be integers (either built-in int or any object

that implements the __index__ special method). If the step argument is omitted, it

defaults to 1. If the start argument is omitted, it defaults to 0. If step is zero, ValueError

is raised.

For a positive step, the contents of a range r are determined by the formula r[i] =

start + step*i where i >= 0 and r[i] < stop.

For a negative step, the contents of the range are still determined by the formula r[i] =

start + step*i, but the constraints are i >= 0 and r[i] > stop.

A range object will be empty if r[0] does not meet the value constraint. Ranges do

support negative indices, but these are interpreted as indexing from the end of the

sequence determined by the positive indices.

Ranges containing absolute values larger than sys.maxsize are permitted but some

features (such as len()) may raise OverflowError.

Range examples:

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(range(1, 11))

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> list(range(0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list(range(0, 10, 3))

[0, 3, 6, 9]

>>> list(range(0, -10, -1))

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

>>> list(range(0))

[]

>>> list(range(1, 0))

[]

Ranges implement all of the common sequence operations except concatenation and

repetition (due to the fact that range objects can only represent sequences that follow a

strict pattern and repetition and concatenation will usually violate that pattern).

start

The value of the start parameter (or 0 if the parameter was not supplied)

stop

The value of the stop parameter

step

The value of the step parameter (or 1 if the parameter was not supplied)

mk:@MSITStore:C:/Users/waxman/AppData/Local/Programs/Python/Python39/Doc/Python395.chm::/library/functions.html#int
mk:@MSITStore:C:/Users/waxman/AppData/Local/Programs/Python/Python39/Doc/Python395.chm::/library/exceptions.html#ValueError
mk:@MSITStore:C:/Users/waxman/AppData/Local/Programs/Python/Python39/Doc/Python395.chm::/library/sys.html#sys.maxsize
mk:@MSITStore:C:/Users/waxman/AppData/Local/Programs/Python/Python39/Doc/Python395.chm::/library/functions.html#len
mk:@MSITStore:C:/Users/waxman/AppData/Local/Programs/Python/Python39/Doc/Python395.chm::/library/exceptions.html#OverflowError
mk:@MSITStore:C:/Users/waxman/AppData/Local/Programs/Python/Python39/Doc/Python395.chm::/library/stdtypes.html#typesseq-common

66

The advantage of the range type over a regular list or tuple is that a range object will always

take the same (small) amount of memory, no matter the size of the range it represents (as it only

stores the start, stop and step values, calculating individual items and subranges as needed).

Example: The following code:

prints:

Use a for loop to solve the next set of problems.

Problem:

Write a program that asks the user for a positive integer n. It then prints the numbers 1 through n,

one per line.

Answer:

Problem:

Write a program that asks the user for a positive integer n. Calculate and print the sum of the

integers 1 through n.

Answer:

mk:@MSITStore:C:/Users/waxman/AppData/Local/Programs/Python/Python39/Doc/Python395.chm::/library/stdtypes.html#range
mk:@MSITStore:C:/Users/waxman/AppData/Local/Programs/Python/Python39/Doc/Python395.chm::/library/stdtypes.html#list
mk:@MSITStore:C:/Users/waxman/AppData/Local/Programs/Python/Python39/Doc/Python395.chm::/library/stdtypes.html#tuple
mk:@MSITStore:C:/Users/waxman/AppData/Local/Programs/Python/Python39/Doc/Python395.chm::/library/stdtypes.html#range

67

Problem:

Write a program that asks the user for a positive integer n. Calculate and print the product of the

integers 1 through n.

Answer:

Problem:

Write a program that asks the user for a positive integer n. Calculate and print the sum of the

odd integers in the range 1 through n.

Answer:

Problem:

Generate and print all numbers between 1 and 1000 such that the sum of the digits equals 20.

Answer:

68

Problem:

Generate and print all prime numbers between 1 and 100.

Answer:

Problem:

Write a program using for loops to print the following:

Answer:

69

Problem:

Write a program, using for loops, to generate the following output.

Answer:

70

How do we control statement execution inside a loop (either while or

for)? Two new ways.

Until now: while

loop:

We keep executing the body of the loop as long as the Boolean expression in the loop head is

true. We exit only when it becomes false.

for loop:

We keep executing the body of the loop as long as the sequence of values in the range() function

has not been exhausted. We exit only when there are no more values generated in conjunction

with the “argument list”.

However …. Python has two other statements that allow us to control what happens inside a

loop:

1. continue

2. break

1. continue: When Python encounters a continue statement inside a loop, the interpreter

proceeds directly to the top of the loop, skipping all the statements in the after the continue. For

example this code

produces this output:

71

Question: What would be printed if the if and continue are left out?

2. break: When Python encounters a break statement inside a loop, the interpreter

causes the loop to terminate and execution of the program continues with the first statement

after the loop.

For example this code

For example this code

produces this output:

Question: explain this output in detail, including the blank line between the tuples printed.

Here is an attempt to re-write the “continue” example with the for loop except using a while

loop:

example

72

Question: What will be printed? Why?

If instead of a continue statement in the code above, we put a break, like this:

we get

Why?

73

The for iterates through any “iterable”, we saw the range function.

Since looping over ranges of integers is quite common, there is a shortcut:

for n in range(1, 10):

 print(f'2 to the {n} power is {2**n}')

The range(i, j [,step]) function creates an object that represents a range of integers with values

from i up to, but not including, j. If the starting value is omitted, it’s taken to be zero. An optional

stride can also be given as a third argument. Here are some examples:

a = range(5) # a = 0, 1, 2, 3, 4

b = range(1, 8) # b = 1, 2, 3, 4, 5, 6, 7

c = range(0, 14, 3) # c = 0, 3, 6, 9, 12

d = range(8, 1, -1) # d = 8, 7, 6, 5, 4, 3, 2

The object created by range() computes the values it represents on demand when lookups are

requested. Thus, it’s efficient to use even with a large range of numbers.

The range() function simplifies number generation. Adjust start, stop, and step for flexible

sequences, including descending and negative ranges.

Some more detail:

Syntax

range(start, stop, step)

• Beginning of sequence (default: 0).

• End of sequence (exclusive – up to but not including End vslue).

• Increment (default: 1). Can be negative.

Some more examples

1. Basic Usage

for i in range(5):

 print(i) # 0, 1, 2, 3, 4

General Syntax: range(stop)

Use case: Quickly generate a sequence from 0 to a given number (exclusive). Useful for iterating

a specific number of times in loops.

74

2. Start and Stop

for i in range(2, 7):

 print(i) # 2, 3, 4, 5, 6

General Syntax: range(start, stop)

Use case: Define a custom starting point. Handy when you need to iterate over a subset of a

range.

3. Positive Step

for i in range(1, 10, 2):

 print(i) # 1, 3, 5, 7, 9

General Syntax: range(start, stop, step)

Use case: Skip numbers in a sequence. Great for processing every nth item or generating spaced

values.

4. Negative Step

for i in range(5, 0, -1):

 print(i) # 5, 4, 3, 2, 1

General Syntax: range(start, stop, step) with a negative step

Use case: Reverse iteration. Useful for counting down or reversing sequences in loops.

5. Negative Start and Stop

for i in range(-5, 0):

 print(i) # -5, -4, -3, -2, -1

General Syntax: range(start, stop) with negative values for start and stop

Use case: Generate negative ranges. Commonly used in algorithms requiring negative indices or

offsets.

6. Negative Range with Step

for i in range(-1, -6, -1):

 print(i) # -1, -2, -3, -4, -5

General Syntax: range(start, stop, step) with both negative values and a negative step

Use case: Combine negative ranges and steps for flexible sequences, such as reverse iteration

over negative values.

75

Try these:

Print numbers from 10 to 1.

Generate multiples of 4 between -8 and 8.

Create a range from -10 to -1 with a step of 2.

Iterate over range(-3, 4, 2) and print each number.

76

The for statement is not limited to sequences of integers. It can be used to iterate over many

kinds of objects including strings, lists, dictionaries, and files. Here’s an example:

for n in [1, 2, 3, 4, 5, 6, 7, 8, 9]:

 print(f'2 to the {n} power is {2**n}')

In this example, the variable n will be assigned successive items from the list [1, 2, 3, 4, ..., 9] on

each iteration.

message = 'Hello World'

Print out the individual characters in message

for c in message:

 print(c)

names = ['Dave', 'Mark', 'Ann', 'Phil']

Print out the members of a list

for name in names:

 print(name)

prices = { 'GOOG' : 490.10, 'IBM' : 91.50, 'AAPL' : 123.15 }

Print out all of the members of a dictionary

for key in prices:

 print(key, '=', prices[key])

Print all of the lines in a file

with open('foo.txt') as file:

 for line in file:

 print(line, end='')

The for loop is one of Python’s most powerful language features because you can create custom

iterator objects and generator functions that supply it with sequences of values.

