
73  

New topic  
Modules and Functions 

 

We have already seen that Python provides built-in function that we can use: 

 

 
These functions are available directly from the interactive shell. But …. say we want to get the square 

root of a number. It would seem reasonable that Python would provide a function to do that as well. 

But when I try to use what I think should work, I get this: 
 

 
But the following will work. 

 

 

 
Why? 

 

“math” is a module (= a file) containing a number of mathematical functions. 
 

The “import” statement instructs Python to “load” the module and make these functions available for 

use. 



74  

Which functions are available in the math module? 
 

We do it with the “dir” command: 
 

 

If we want to know what each one of these function does we use the “help” command: 
 
 

 

And it goes on and on .. 
 

You can also get help on a single function: 

 



75  

How do we use functions in a module? 

There are three ways. 

1. The way we just saw: This just makes the module available but we need to use the “dot” syntax to 

actually access the function. 

 

 

2. We can import a single function from a module. The function is then available to be used “directly” 

like the len() function. 

 

 
3. We can import all the functions from a module at one time. We can then use the function name 

directly as in 2 above. 

 

 
Question: 

 

What are the advantages and disadvantages of each of the methods above? 

Answer: 

 

 

 

 

 
We can also do this: 

 



76  

 
 

 

 

Of course, we can create our own functions and modules! 
 

Overview 

 

Functions are a fundamental building block that allow for the modularization and reusability of 

code. Understanding how functions are implemented in Python involves several key concepts, 

including function definition, arguments, return values, scope, and closures.  

 

1. Function Definition 

 

A function in Python is defined using the `def` keyword, followed by the function name and 

parentheses containing any parameters the function might take. The body of the function starts on 

the next line and must be indented. 

 

def my_function(param1, param2): 

    # Function body 

    result = param1 + param2 

    return result 

 

2. Function Arguments 

 

Functions can take arguments, which are values passed to the function when it is called. Python 

supports several types of arguments: 

 

Positional arguments: If you have them, it’s their  position in the function call matters. They are 

like the function arguments in the other languages that you are familiar with. 

Keyword arguments: These are optional and have default values. They are identified by the 

keyword used in the function call, not their position. 

Arbitrary positional arguments: If a function needs to accept an arbitrary number of positional 

arguments, it can use `*args`. 

Arbitrary keyword arguments: To accept an arbitrary number of keyword arguments, a function 

can use `**kwargs`. 

 

def example_function(positional, *args, keyword='default', **kwargs): 

    pass 

 

 

 

 

 

 



77  

3. Return Values 

 

Functions in Python can return values using the `return` statement. If no `return` statement is 

present or if `return` is called without a value, the function will return `None`. 

 

def add(a, b): 

    return a + b 

 

4. Scope and Namespaces 

 

In Python, every function creates its own scope, which is the context in which its variables are 

defined and accessed. Variables defined inside a function are local to that function and not 

accessible outside of it. Python uses namespaces to keep track of all the variables and their scopes. 

 

Local scope: Refers to variables defined within a function. 

Global scope: Refers to variables defined at the top level of a module or declared global using the 

`global` keyword within a function. 

Enclosing scope: Refers to the scope of any enclosing functions, relevant in the context of nested 

functions. 

 

5. First-Class Objects 

 

In Python, functions are first-class objects, meaning they can be passed around and used as 

arguments or return values in other functions. This allows for higher-order functions and 

functional programming patterns. 

 

def shout(text): 

    return text.upper() 

 

def whisper(text): 

    return text.lower() 

 

def greet(func): 

    greeting = func("Hello, I am a function") 

    print(greeting) 

 

greet(shout)  # Output: "HELLO, I AM A FUNCTION" 

greet(whisper)  # Output: "hello, i am a function" 

 

6. Closures 

 

A closure in Python is a function object that remembers values in enclosing scopes even if they 

are not present in memory. It is a record that stores a function together with an environment: a 

mapping associating each free variable of the function with the value or reference to which the 

name was bound when the closure was created. 

 

 



78  

def outer_function(text): 

    def inner_function(): 

        print(text) 

    return inner_function  # Return the inner function 

 

my_func = outer_function('Hello') 

my_func()  # Output: "Hello" 

   

 

 

 

7. Decorators 

 

Decorators are a powerful aspect of Python functions, allowing you to modify the behavior of a 

function without changing its code. A decorator is a function that takes another function as an 

argument, wraps its behavior in an inner function, and returns the wrapped function. 

 

def my_decorator(func): 

    def wrapper(): 

        print("Something is happening before the function is called.") 

        func() 

        print("Something is happening after the function is called.") 

    return wrapper 

 

@my_decorator 

def say_hello(): 

    print("Hello!") 

 

say_hello() 

 

 

Let’s see/do some examples. 
 
 



79  

IMPORTANT: Terminology: The x any above are called parameters, the 3 and 4 are called 

arguments. The arguments can be constants as in the above example, or variables as in the examples 

below. 

 

Here is the syntax. 
 

def function_name( parameter list): # the parameter list could be empty – but still need (). 

code block 

 

And the semantics: 
 

1. A function needs to be defined, using the “def” construction above, before it is used. Otherwise 

Python will issue an error like this: 

 

 
2. The parameter list is a list of variables that will refer to local copies of the arguments “passed” from 

the calling code. For example: 

 

 

Notice1: The variables in the parameter list are local. This means that any changes that you make to 

them in the function do not affect the values in the corresponding arguments in the main program. What 

happens in Vegas …. 

Notice2: The actual story is a bit subtler than Notice1. We have passed in simple types. Stay tuned for 

what happens later on when we pass mutable objects. 



80  

Question: How does a function return a value back to the “caller”? 

Answer: It uses the “return statement”. It has two forms: 

• return <some value> 

• return 

• or … the function just “falls off” the last statement and implicitly returns to the caller. 

The first form terminates the function and makes <value> available at the place from which the 

function was called. Program execution resumes from that point as well. 

The second form just terminates the function, and computation resumes from the point from which the 

program was called. 

The third “form” behaves just like the one above. 
 

Terminology: When a function doesn’t return a value, but rather performs some function for us, we 

will sometimes call it a procedure. 

 

 
This tells us that the len() function returns an int. 

 

 
But the print function returns “NoneType”, a catchall that says that the function returns nothing. The 

print function is not computing a value for us, it’s basically “doing a job” for us, and then returning to 

the caller. We will call this a procedure. 

Problem: 
 

Write a function is_even(x) which returns True if x is even and False otherwise. 

Answer: 

 

 

 

 

 

 

 

 

 



81  

Problem: 

 

Write a function is_leap(x) which returns True if x is a leap year and False otherwise. Answer: 

 

 

 

 

 

 

 

 

 

 

 

 
Problem: 

 

Write a function is_prime(x) which returns True if x is a prime number and False otherwise. 

Answer: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



82  

 

Problem: 
 

Write a program to ask the user for two integers, first and last. Write a program to print out all the 

primes between first and last (inclusive), five values per line. 

Answer: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Problem: 

 

Write a function sum_of_digits(n) which returns the sum of the digits of n. 

Answer:



83  

 

Just like there are conversions, int, float, str, there is a built-in function called bin. The documentation 

says: 

bin(x) 
 

Convert an integer number to a binary string. 

 

For example: 

 

 
Problem: 

 

Write a function my_bin(n) which converts an integer number to a string representation of n. But 

Leave out the leading ‘0b’ returned by the built in function bin. 

 

 
 

Problem: 

 

A generalization of the above.  

 

Write a function  

 

convert(a , basea, b) 

 

where a is an integer in base a to an equivalent integer in base b. The result will be a base b interger 

represented as a string.  basea and baseb are integers between 2 – 9.  



84  

Variable scoping in Python 
 

 

The term scoping refers to the visibility of variables (and all names) from within the program. If I set a 

variable’s value within a function, have I affected it outside of the function as well? What if I set a 

variable’s value inside a for loop? 

 

Python has four levels of scoping: 

 

• Local (i.e. the function that you are in) 

 

• Enclosing function 

 

• Global 

 

• Built-ins 

 

These are known by the abbreviation LEGB.  

 

If you’re in a function, then all four are searched, in order. If you’re outside of a function, then only the 

final two (globals and built-ins) are searched. Once the identifier is found, Python stops searching. 

 

That’s an important consideration to keep in mind. If you haven’t defined a function, you’re operating at 

the global level. Indentation might be pervasive in Python, but it doesn’t affect variable scoping at all. 

Unless you are in a function 

 

Python has very few reserved words; many of the most common types and functions we run are neither 

globals nor reserved keywords. Python searches the builtins namespace after the global one, before giving 

up on you and raising an exception. 

 

What if you define a global name that’s identical to one in built-ins?  

Then you have effectively shadowed (i.e. hidden) the “higher” value.  

 

sum = 0 

for i in range(5): 

    sum += i 

print(sum) 

  

print(sum([10, 20, 30]))  # sum is a built-in that accepts any appropriate iterable  

  

TypeError: 'int' object is not callable 

 

Why do we get this weird error?  

Because in addition to the sum function defined in built-ins, we have now defined a global variable named 

sum. And because globals come before built-ins in Python’s search path, Python discovers that sum is an 

integer and refuses to invoke it. 

 

 

It’s a bit frustrating that the language doesn’t bother to check or warn you about redefining names in built-

ins. However, there are tools (e.g., pylint) that will tell you if you’ve accidentally (or not) created a 

clashing name. 

 

 



85  

LOCAL VARIABLES 

 

Firstly, function parameters have local scope, so that any changes to them do not affect their “original” 

value outside the function. This is like call by value in C++. 

 

If I define a variable inside a function, then it’s considered to be a local variable. Local variables exist 

only as long as the function does; when the function goes away, so do the local variables it defined; for 

example 

 

x = 100 

  

def foo(): 

    x = 200 

    print(x) 

  

print(x) 

foo() 

print(x) 

 

This code will print 100, 200, and then 100 again. In the code, we’ve defined two variables: x in the global 

scope is defined to be 100 and never changes, whereas x in the local scope, available only within the 

function foo, is 200 and never changes. The fact that both are called x doesn’t confuse Python, because 

from within the function, it’ll see the local x and ignore the global one entirely. 

 

 

 

 
 

THE GLOBAL STATEMENT 

 

What if, from within the function, I want to change the global variable?  

 

Use the global statement.  

x = 100 

 

def foo(): 

    global x 

    x = 200 

    print(x) 



86  

 

print(x) 

foo() 

print(x) 

 

This code will print 100, 200, and then 200, because there’s only one x, thanks to the global declaration. 

 

This behavior changes when we pass mutable iterables to a function though. 

 

The basic idea is that Python utilizes a system, which is known as “Call by Object Reference” or “Call by 

assignment” (what is usually called call by value). In the event that you pass arguments like whole 

numbers, strings or tuples to a function, the passing is like call-by-value because you can not change the 

value of the immutable objects being passed to the function. Whereas passing mutable objects can be 

considered as call by reference because when their values are changed inside the function, then it will also 

be reflected outside the function. 

 

 
 

 

ENCLOSING (a function defined in inside another) 

 

Unlike other languages, Python allows functions to be defined inside other functions (we will deal with 

lambdas later). We will encounter this when we look at “decorators.” 

 

def foo(x): 

    def bar(y): 

        return x * y 

    return bar 

 

f = foo(10) 

print(f(20)) 

 

What are we doing defining bar inside of foo? This inner function and its accessible variables etc. 

sometimes known as a closure, is a function that’s defined when foo is executed. Indeed, every time that 

we run foo, we get a new function named bar back. The name bar is a local name inside of foo.  

 

When we run the code, the result is 200. It makes sense that when we invoke f, we’re executing bar, which 

was returned by foo. And we can understand how bar has access to y, since it’s a local variable. But what 

about x? How does the function bar have access to x, a local variable in foo? 

 

 

 

The answer is LEGB: 

 



87  

First, Python looks for x locally, in the local function bar. 

 

Next, Python looks for x in the enclosing function foo. 

 

If x were not in foo, then Python would continue looking at the global level. 

 

And if x were not a global variable, then Python would look in the built-ins namespace. 

 

What if I want to change the value of x, a local variable in the enclosing function? It’s not global, so the 

global declaration won’t work. In Python 3, though, we have the nonlocal keyword. This keyword tells 

Python: “Any assignment we do to this variable should go to the outer function, not to a (new) local 

variable”. There is no need to declare a variable nonlocal if it is only going to be read.  

 

For example 

 

def foo(): 

    call_counter = 0                                     ❶ 

    def bar(y): 

        nonlocal call_counter                            ❷ 

        call_counter += 1                                ❸ 

        return f'y = {y}, call_counter = {call_counter}' 

    return bar 

 

b = foo() 

for i in range(10, 100, 10):                             ❹ 

    print(b(i))      

                                     ❺ 

❶ Initializes call_counter as a local variable in foo 

 

❷ Tells bar that assignments to call_counter should affect the enclosing variable in foo 

 

❸ Increments call_counter, whose value sticks around across runs of bar 

 

❹ Iterates over the numbers 10, 20, 30, ... 90 

 

❺ Calls b with each of the numbers in that range 

 

The output from this code is 

 

y = 10, call_counter = 1 

y = 20, call_counter = 2 

y = 30, call_counter = 3 

y = 40, call_counter = 4 

y = 50, call_counter = 5 

y = 60, call_counter = 6 

y = 70, call_counter = 7 

y = 80, call_counter = 8 

y = 90, call_counter = 9 

 

 

Takeaway:  the LEGB scoping rule and how it’s always, without exception, used to find all identifiers, 

including data, functions, classes, and modules. 

 



88  

What is the difference between a nonocal reference of an inner function and a 

closure? 

 
When you define an inner function within an outer function, the inner function can access variables from 

the outer function's scope. These accessed variables are known as "nonlocal" to the inner function because 

they are not defined within the inner function's local scope nor are they global. They lie in the enclosing 

function's scope. 

Nonlocal References in Inner Functions 

Here's a simple example: 

def outer(): 

    x = "outer x" 

    def inner(): 

        print(x)  # Accessing the nonlocal variable x from the outer function 

 

    inner() 

outer() 

 
When we run this we get: RUN IT! 

Closures 

A closure occurs when an inner function remembers and has access to variables from its enclosing scope 

even after the outer function has finished executing. The key point is that the inner function has "closed 

over" the variables from its enclosing scope. 

This "closing over" behavior enables the inner function to retain the state of its environment even when 

called outside its original context. For a function to be a closure, it must satisfy three conditions: 

 

1. It must be a nested function. 

2. It must access variables from an enclosing scope. 

3. The inner function must be returned or passed out of its enclosing function. 

 

Here's an example that demonstrates a closure (without the nonlocal we used above): 

 

def outer_function(x): 

    y = 5 

 

    def inner_function(z): 

        return x + y + z  # Accesses x and y from the outer scope 

 

    return inner_function  # Returns inner_function itself, not a value 

 

# Creation of a closure 

closure = outer_function(10) 

 

  



89  

In some more detail … 

Code: 
def foo(x): 

    def bar(y): 

        return x * y 

    return bar 

 

f = foo(10) 

print(f(20)) 

 

What is going on? 
 

1. Definition of foo: 

• foo(x) is a function that takes a single argument x. 

• Inside foo, another function bar(y) is defined.  

o bar(y) takes another argument y and returns the product of x and y. 

• foo(x) returns the function bar. 

2. Calling foo: 

• When foo(10) is called, x is set to 10. 

• The function bar(y) is returned by foo, and it remembers the value of x (which is 10) even after foo 

finishes execution.  

o This is called a closure: bar retains access to the variable x from the surrounding scope of foo. 

3. Assigning bar to f: 

• f = foo(10) assigns the returned bar function to the variable f. 

• Now, f is a function that takes one argument y and computes 10 * y. 

4. Calling f(20): 

• When f(20) is called, it executes the bar(y) function:  

o The x value is remembered as 10 (from the closure). 

o The y value is 20. 

o So, x * y becomes 10 * 20, which equals 200. 

5. Printing the Result: 

• print(f(20)) prints the result of f(20), which is 200. 

 

Note: 

1. Closure: The inner function bar retains access to the variable x from the outer function foo even after foo 

has finished execution. 

2. Function as a First-Class Object: The bar function is returned as a value and assigned to f, allowing it to 

be called independently. 

Final Output: 
200 



90  

 

1. The Closure Mechanism 

When a nested function (like bar) uses a variable from its enclosing scope (like x in foo), Python creates 

a closure for the nested function. This closure stores references to the variables from the enclosing scope 

that the nested function needs. 

2. Where is x Stored? 

• The variable x is not stored in the global or local scope of bar. Instead:  

o It is captured and stored in a cell object within the __closure__ attribute of the function 

bar. 

o This ensures that x remains accessible even after the enclosing function foo has finished 

executing. 

3. Inspecting the Closure 

You can see this in action by inspecting the __closure__ attribute of f: 

def foo(x): 

    def bar(y): 

        return x * y 

    return bar 

 

f = foo(10)  # Call foo and get the inner function 

 

# Inspect the closure 

print(f.__closure__)  # Output: (<cell at 0x...: int object at 0x...>,) 

print(f.__closure__[0].cell_contents)  # Output: 10 

• f.__closure__ is a tuple of cell objects, where each cell represents a variable captured from the 

enclosing scope. 

• Each cell contains a reference to the value of the variable (in this case, x = 10). 

4. Data Structure: The Cell Object 

• The cell object acts as a container for the variable x. 

• Internally, Python uses this cell object to maintain a reference to the captured variable, ensuring it 

is accessible for the nested function. 

5. Key Points About This Storage: 

1. Efficient Memory Management: Python stores only a reference to x, not a copy, allowing 

efficient use of memory. 

2. Garbage Collection: The captured variable is not garbage collected as long as the closure exists, 

even if the enclosing function (foo) has finished executing. 

 

  



91  

Functions are objects and … 
 

Can have attributes assigned to them. For example: 

 

def do_thing():  

  return 

do_thing.whatever = "hi" 

 

print(do_thing.whatever) 

#> hi 

 

Note that not all objects can have attributes assigned to them.  

Python explicitly forbids attribute assignment to built-in functions: 

print.some_data = "foo" 

> AttributeError: 'builtin_function_or_method' object has no attribute 'some_data' 

And you can’t assign attributes to built-in types: 

var = "stringy string" 

var.some_data = "foo" 

> AttributeError: 'str' object has no attribute 'some_data' 

Even though both are objects: 

isinstance(print, object) 

#> True 

isinstance(var, object) 

#> True 

How does this work? 

Internally, it's just a dictionary that handles failed attribute lookups (i.e., nondefault attributes). You can 

access or even replace such dictionary using __dict__ attribute.   

For example, you can track the number of times a function was called: 

def func(a, b): 

    func.ncalls += 1 

    return a + b 

 

 

func.ncalls = 0 

 

func(1, 2) 

func(3, 2) 

print(func.ncalls) 

 

Notice that ncalls is not a local variable in func, rather it is an attribute of the function object func. 



92  

Problem: Consider the following function 

def Dog(): 

  def bark(): 

    print("bark bark") 

  Dog.bark = bark 

  return Dog 

 

What happens when we run bark()? 

 

 

 

 

What happens when we run Dog.bark()? 

 

 

 

 

What happens when we run: 

 

spot= Dog() 

spot.bark() 

 

 

 

What if we had just had: 

 

def Dog(): 

  def bark(): 

    print("bark bark") 

  Dog.bark = bark 

  return Dog 

 

Dog() 

Dog.bark() 

 

 

 

 

 

 

 

 

 

 

 

  



93  

A deeper dive into Python functions  
 

1. Argument evaluation 

2. Default arguments 

3. Variadic arguments 

4. Keyword arguments 

5. Variadic Keyword Arguments 

6. Functions Accepting All Inputs 

7. Positional-Only Arguments 

8. Names, Documentation Strings, and Type Hints 

9. Function Application and Parameter Passing 

10. Return Values 

 

 

1.Arguments are fully evaluated left-to-right before executing the function body. 
 

def add(x, y): 

    return x + y 
 

For example, add(1+1, 2+2) is first reduced to add(2, 4) before calling the function. This is known as 

applicative evaluation order. The order and number of arguments must match the parameters given in the 

function definition. If a mismatch exists, a TypeError exception is raised. The structure of calling a 

function (such as the number of required arguments) is known as the function’s call signature. 

 

Try this:  

 

def add(x, y): 

    return x + y 

a=1 

print(add(a,a+1)) 

 

2.Python allows for default arguments 
 

You can attach default values to function parameters by assigning values in the function definition. For 

example: 

 

def split(line, delimiter=','): 

    statements 
 

example: We have already encountered this in the print function 

 

Important rules 

 

1. When a function defines a parameter with a default value, that parameter and all the parameters 

that follow it are optional.  

 

2. It is not possible to specify a parameter with no default value after any parameter with a default 

value. 

 

  



94  

 

Why those rules? 

 

Say we define a function with a non-default parameter following a default parameter. This could lead to 

ambiguity in function calls. 

 

# This function has invalid Python syntax 

def my_func(a=10, b): 

    print(f"a: {a}, b: {b}") 

 

In this hypothetical situation, when calling my_func with a single argument, it would be unclear whether 

the provided argument should be assigned to a or b:  

 

my_func(5) 

 

• Should 5 be assigned to a, making use of the default value for b (which doesn't exist)? 

• Or should 5 be assigned to b, using the default value for a? 

 

This ambiguity arises because there's no clear rule to determine how to map the provided arguments to 

parameters when the parameters are not consistently defined (i.e., a mix of default and non-default 

parameters without clear ordering). 

 

To avoid such ambiguities, Python enforces the rule that once you start defining function parameters with 

default values, all following parameters must either have default values as well or be part of the variable 

arguments (*args or **kwargs). This rule ensures that there is always a clear and unambiguous mapping 

from provided arguments to the function's parameters, preserving the clarity and predictability of function 

calls. 

 

Default parameter values are evaluated once when the function is first defined, not each time the 

function is called. This often leads to surprising behavior if mutable objects are used as a default since 

they will retain the change and the original default won’t be the “default” anymore: 

 

def f(x, items=[]): 

    items.append(x) 

    return items 

 

f(1)       # returns [1] 

f(2)       # returns [1, 2] 

f(3)       # returns [1, 2, 3] 
 

 

Notice how the default argument retains the modifications made from previous invocations and doesn’t 

reinitialize to the empty list. To prevent this, it is better to use None and add a check as follows: 

 

def func(x, items=None): 

     if items is None: 

         items = [] 

     items.append(x) 

     return items 

 

 

 

 



95  

The takeaway: Never use a mutable value, such as a list or dictionary, as a parameter’s default value. 

You shouldn’t do so because default values are stored and reused across calls to the function. This means 

that if you modify the default value in one call, that modification will be visible in the next call. 

 

So, as a general practice, to avoid such surprises, only use immutable objects for default argument 

values—numbers, strings, Booleans, None, and so on. 

 

3.Variadic Arguments 
 

A function can accept a variable number of arguments if an asterisk (*) is used as a prefix on the last 

parameter name. For example: 

 

def product(first, *args): 

    result = first 

    for x in args:  # note args is an iterable. Its type is <class 'tuple'>.  

        result = result * x 

    return result 
 

product(10, 20)       # -> 200 

product(2, 3, 4, 5)   # -> 120 

 

In this case, all of the extra arguments are placed into the args variable as a tuple. You can then work with 

the arguments using the standard sequence operations—iteration, slicing, unpacking, and so on. 

 

3.Keyword Arguments vs Positional Arguments 
 

When calling a function, arguments can be supplied by explicitly naming each parameter and specifying a 

value. These are known as keyword arguments. Here is an example: 

 

def func(w, x, y, z): 

    statements 
 

# Keyword argument invocation 

func(x=3, y=22, w='hello', z=[1, 2]) 

 

With keyword arguments, the order of the arguments doesn’t matter as long as each required parameter 

gets a single value.  

 

If you omit any of the required arguments or if the name of a keyword doesn’t match any of the parameter 

names in the function definition, a TypeError exception is raised.  

 

 

Keyword arguments are evaluated in the same order as they are specified in the function call. 

 

Important 

Positional arguments and keyword arguments can appear in the same function call, provided that 

 

• all the positional arguments appear first,  

• values are provided for all nonoptional arguments, and  

• no argument receives more than one value.  

 



96  

Here’s an example: 

 

def func(w, x, y, z): 

    statements 
 

func('hello', 3, z=[1, 2], y=22)  # note z before y, but that’s OK 

func(3, 22, w='hello', z=[1, 2])    # TypeError. Multiple values for w 

 

We can force the use of keyword arguments 

 

It is possible to force the use of keyword arguments. This is done by listing parameters after a * 

argument or just by including a single * in the definition.  

 

Consider the following examples: 

  

def read_data(filename, *, debug=False): 
    ... 

 

def product(first, *values, scale=1): 

    result = first * scale 

    for val in values: 

        result = result * val 

    return result 
 

In this example, the debug argument to read_data() can only be specified by keyword. This restriction 

often improves code readability: 

 

 

data = read_data('Data.csv', True)        # NO. TypeError 

data = read_data('Data.csv', debug=True)  # Yes. 

 

The product() function takes any number of positional arguments and an optional keyword-only argument. 

For example: 

 

result = product(2,3,4)             # Result = 24 

result = product(2,3,4, scale=10)   # Result = 240 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97  

4.Variadic Keyword Arguments 

 
If the last argument of a function definition is prefixed with **, all the additional keyword arguments 

(those that don’t match any of the other parameter names) are placed in a dictionary and passed to the 

function. The order of items in this dictionary is guaranteed to match the order in which keyword 

arguments were provided. 

 

Why do this? 

 

Arbitrary keyword arguments might be useful for defining functions that accept a large number of 

potentially open-ended configuration options that would be too unwieldy to list as parameters. Here’s an 

example: 

 

 

def make_table(data, **parms): 

    # Get configuration parameters from parms (a dict) 

    fgcolor = parms.pop('fgcolor', 'black') 

    bgcolor = parms.pop('bgcolor', 'white') 

    width = parms.pop('width', None) 

    ... 

    # No more options 

    if parms: 

         raise TypeError(f'Unsupported configuration options {list(parms)}') 

 

make_table(items, fgcolor='black', bgcolor='white', border=1, 

                  borderstyle='grooved', cellpadding=10, 

                  width=400) 
 

The pop() method of a dictionary removes an item from a dictionary, returning a possible default value if 

it’s not defined. The parms.pop('fgcolor', 'black') expression used in this code mimics the behavior of a 

keyword argument specified with a default value. 

 

  



98  

5.Functions Accepting All Inputs 

 

By using both * and **, you can write a function that accepts any combination of 

arguments. The positional arguments are passed as a tuple and the keyword arguments are 

passed as a dictionary. For example: 

 

 

# Accept variable number of positional or keyword arguments 

def func(*args, **kwargs): 

    # args is a tuple of positional args 

    # kwargs is dictionary of keyword args 

    ... 

This combined use of *args and **kwargs is commonly used to write wrappers, decorators, 

proxies, and similar functions.  

 

For example, suppose you have a function to parse lines of text taken from an 

iterable: 

 

def parse_lines(lines, separator=',', types=(), debug=False): 

    for line in lines: 

        ... 

        statements 

        ... 

Now, suppose you want to make a special-case function that parses data from a file 

specified by filename instead. To do that, you could write: 

 

def parse_file(filename, *args, **kwargs): 

    with open(filename, 'rt') as file: 

        return parse_lines(file, *args, **kwargs) 

 

The benefit of this approach is that the parse_file() function doesn’t need to know 

anything about the arguments of parse_lines(). It accepts any extra arguments the caller 

provides and passes them along. This also simplifies the maintenance of the parse_file() 

function. For example, if new arguments are added to parse_lines(), those arguments will 

magically work with the parse_file() function too. 

 

6.Positional-Only Arguments 

 

Many of Python’s built-in functions only accept arguments by position. You’ll see this 

indicated by the presence of a slash (/) in the calling signature of a function shown by 

various help utilities and IDEs. For example, you might see something like func(x, y, /). 

This means that all arguments appearing before the slash can only be specified by position. 

Thus, you could call the function as func(2, 3) but not as func(x=2, y=3). For 

completeness, this syntax may also be used when defining functions. For example, you can 

write the following: 

 



99  

def func(x, y, /): 

    pass 

 

func(1, 2)     # Ok 

func(1, y=2)   # Error 

 

 

This definition is supported only in Python 3.8 and later. However, it can be a useful way 

to avoid potential name clashes between argument names. For example, consider the 

following code: 

 

import time 

 

def after(seconds, func, /, *args, **kwargs): 

    time.sleep(seconds) 

    return func(*args, **kwargs) 

 

 

def duration(*, seconds, minutes, hours): 

    return seconds + 60 * minutes + 3600 * hours 

 

after(5, duration, seconds=20, minutes=3, hours=2) 

 

In this code, seconds is being passed as a keyword argument, but it’s intended to be used 

with the duration function that’s passed to after(). The use of positional-only arguments in 

after() prevents a name clash with the seconds argument that appears first. 

 

7.Names, Documentation Strings, and Type Hints 

 
The standard naming convention for functions is to use lowercase letters with an underscore ( _ ) used as a 

word separator—for example, read_data() and not readData().  

 

If a function is not meant to be used directly because it’s a helper or some kind of internal 

implementation detail, its name usually has a single underscore prepended to it—for example, _helper().  

 

These are only conventions, however. You are free to name a function whatever you want as long as the 

name is a valid identifier. 

 

The name of a function can be obtained via the __name__ attribute. This is sometimes useful for 

debugging. 

 

>>> def square(x): 

...    return x * x 

... 

>>> square.__name__ 

'square' 

>>> 

 



100  

It is common for the first statement of a function to be a documentation string describing its usage.  

 

For example: 

 

def factorial(n): 

    ''' 

    Computes n factorial. For example: 

 

    >>> factorial(6) 

    120 

    >>> 

    ''' 

    if n <= 1: 

        return 1 

    else: 

        return n*factorial(n-1) 

 

The documentation string is stored in the __doc__ attribute of the function. It’s often accessed by IDEs to 

provide interactive help. 

 

We can then write: factorial.__doc__, or help(factorial) 

 

Functions can also be annotated with type hints. For example: 

 

def factorial(n: int) -> int: 

    if n <= 1: 

        return 1 

    else: 

        return n * factorial(n - 1) 

 
The type hints don’t change anything about how the function evaluates. That is, the presence of hints 

provides no performance benefits or extra runtime error checking. The hints are merely stored in the 

__annotations__ attribute of the function which is a dictionary mapping argument names to the supplied 

hints. Third-party tools such as IDEs and code checkers might use the hints for various purposes. 

 

Sometimes you will see type hints attached to local variables within a function. For example: 

 

def factorial(n:int) -> int: 

    result: int = 1        # Type hinted local variable 

    while n > 1: 

        result *= n 

        n -= 1 

    return result 

 

Such hints are completely ignored by the interpreter. They’re not checked, stored, or even evaluated. 

Again, the purpose of the hints is to help third-party code-checking tools.  

 

Adding type hints to functions is not advised unless you are actively using code-checking tools that make 

use of them. It is easy to specify type hints incorrectly—and, unless you’re using a tool that checks them, 

errors will go undiscovered until someone else decides to run a type-checking tool on your code. 

 

 



101  

 

8.Function Application and Parameter Passing 

 
When a function is called, the function parameters are local names that get bound to the passed input 

objects. Python passes the supplied objects to the function “as is” without any extra copying.  

 

Care is required if mutable objects, such as lists or dictionaries, are passed. If changes are made, 

those changes are reflected in the original object. Here’s an example: 

 

 

def square(items): 

    for i, x in enumerate(items): # enumerate creates an iterator that yields pairs. 

        items[i] = x * x    # Modify items in-place 

a = [1, 2, 3, 4, 5] 

square(a)         # Changes a to [1, 4, 9, 16, 25] 

 

Functions that mutate their input values, or change the state of other parts of the program 

behind the scenes, are said to have “side effects.”  

 

As a general rule, side effects are best avoided. They can become a source of subtle 

programming errors as programs grow in size and complexity—it may not be obvious from 

reading a function call if a function has side effects or not. Such functions also interact 

poorly with programs involving threads and concurrency since side effects typically need 

to be protected by locks. 

 

It’s important to make a distinction between modifying an object and reassigning a 

variable name. Consider this function: 

 

def sum_squares(items): 

    items = [x*x for x in items]  # Reassign "items" name, not changing the passed list. 

    return sum(items) 

 

a = [1, 2, 3, 4, 5] 

result = sum_squares(a) 

print(a)        # [1, 2, 3, 4, 5]    (Unchanged) 

 

In this example, it appears as if the sum_squares() function might be overwriting the 

passed items variable. Yes, the local items label is reassigned to a new value. But the 

original input value (a) is not changed by that operation. Instead, the local variable name 

items is bound to a completely different object—the result of the internal list 

comprehension. There is a difference between assigning a variable name and modifying an 

object. When you assign a value to a name, you’re not overwriting the object that was 

already there—you’re just reassigning the name to a different object. 

 

 

Stylistically, it is common for functions with just side effects to return None as a result. 



102  

 

As an example, consider the sort() method of a list: 

 

>>> items = [10, 3, 2, 9, 5] 

>>> items.sort()      # Observe: no return value 

>>> items 

[2, 3, 5, 9, 10] 

>>> 

 

The sort() method performs an in-place sort of list items. It returns no result. The lack of a 

result is a strong indicator of a side effect—in this case, the elements of the list got 

rearranged. 

 

Argument unpacking when passing arguments.  

 

Sometimes you already have data in a sequence or a mapping that you’d like to pass to a 

function. To do this, you can use * and ** in function invocations.  

 

For example: 

 

def func(x, y, z): 

    ... 

 

s = (1, 2, 3) 

# Pass a sequence as arguments 

result = func(*s) 

 

# Pass a mapping as keyword arguments 

d = { 'x':1, 'y':2, 'z':3 } 

result = func(**d) 
 

You may be taking data from multiple sources or even supplying some of the arguments 

explicitly, and it will all work as long as the function gets all of its required arguments, 

there is no duplication, and everything in its calling signature aligns properly. You can 

even use * and ** more than once in the same function call. If you’re missing an argument 

or specify duplicate values for an argument, you’ll get an error. Python will never let you 

call a function with arguments that don’t satisfy its signature. 

 

We will return to this topic in greater detail later on.  

 

 

 

 

 

 

 



103  

 

 

9.Return Values 

 

The return statement returns a value from a function. If no value is specified or you omit 

the return statement, None is returned.  

 

Argument unpacking when returning values. 

To return multiple values, place them in a tuple: 

 

def parse_value(text): 

    ''' 

    Split text of the form name=val into (name, val) 

    ''' 

    parts = text.split('=', 1) 

    return (parts[0].strip(), parts[1].strip()) 

 

Values returned in a tuple can be unpacked to individual variables: 

 

name, value = parse_value('url=http://www.python.org') 

 

 

Sometimes Named Tuples Are Used as an Alternative 

 

In some cases, when you return multiple values from a function, you might use a regular 

tuple. For example: 

 

return (parts[0].strip(), parts[1].strip()) 

 

In this case, `parts[0]` refers to the first part of the string (the "name") and `parts[1]` refers 

to the second part (the "value"). However, this approach can be unclear when reading the 

code because you have to remember what `parts[0]` and `parts[1]` represent. 

 

Wouldn't it be better if we could write something more readable, like this? 

 

return (name.strip(), value.strip()) 

 

This makes it much clearer what each of parts[0] And parts[1] represents.  

 

Well, we can’t to this exactly, but we can make it such that we can say name and value in 

the calling scope. How? 

 

Enter Named Tuples 

 

Named tuples give us the clarity of assigning names to the values we're returning, while 

maintaining the tuple-like behavior. Here’s how you can define a named tuple: 



104  

 

from typing import NamedTuple 

 

Define a named tuple to hold the parsed result 

 

class ParseResult(NamedTuple): # inherit from NamedTuple 

    name: str # notice the optional type hint 

    value: str 

 

 

Now, instead of returning a regular tuple, we can return an instance of `ParseResult`: 

 

def parse_value(text): 

    ''' 

    Split text of the form name=val into a named tuple 

    ''' 

    parts = text.split('=', 1) 

       return ParseResult(parts[0].strip(), parts[1].strip()) 

 

Here, `ParseResult(parts[0].strip(), parts[1].strip())` creates a `ParseResult` object with two 

fields: `name` and `value`. This makes the return value much clearer and more structured 

than using a basic tuple. 

 

Accessing Named Tuple Fields 

 

A named tuple works just like a normal tuple (you can still unpack it, iterate over it, etc.), 

but you can also reference its fields using meaningful names: 

 

r = parse_value('url=http://www.python.org') 

print(r.name, r.value) 

 

This prints: 

 

url http://www.python.org 

 

By using `r.name` and `r.value`, it's immediately clear what each value represents. This 

eliminates any confusion that might arise from using index-based access like `r[0]` or 

`r[1]`. 

 

Named tuples provide a simple, readable, and structured way to return multiple values 

from a function. They enhance code clarity by allowing you to refer to values by name 

rather than relying on index positions, making your code easier to maintain and understand. 

You can still refer to the various elements of the tuple by positional value if you like.  

  



105  

 

Function definitions 
 

What does Python do when it encounters a function definition? 

 
When the Python interpreter encounters a function definition in a program for the first time, a series of steps are 

followed to interpret and store the function for later use. Here's a detailed breakdown of what happens: 

 

1. Parsing the Function Definition 

 

The interpreter first parses the function definition. This involves analyzing the syntax of the `def` statement, 

including the function name, parameters, and the body of the function. Python's parser converts this source code 

into an abstract syntax tree (AST), which represents the structure of the code in a tree-like form. 

 

 2. Compilation to Bytecode 

 

After parsing, the function's code block (its body) is compiled into bytecode. Bytecode is a low-level, platform-

independent representation of the source code, which is designed to be executed by the Python Virtual Machine 

(PVM). Each operation in the function body, such as variable assignment, operation on variables, and function calls, 

is translated into a series of bytecode instructions. 

 

 3. Creation of a Function Object 

 

Once the bytecode is ready, Python creates a function object. This function object is a first-class object, meaning it 

can be passed around and manipulated like any other object in Python. The function object contains several pieces 

of information: 

 

What’s in the function object? 
 

Code object: This contains the compiled bytecode of the function, as well as other metadata such as the function's 

name, its argument names, and its defaults. 

Global references: The function object also keeps a reference to the globals of the module in which it is defined. 

This is important because the function will need access to global variables and other functions defined at the module 

level when it is called. 

Closure: If the function is a closure, the function object will also contain a reference to any variables captured from 

an enclosing scope. 

 

4. Function Object Assignment 

 

The function object is then bound to the function's name in the current namespace. This means that after the 

definition is interpreted, you can call the function by using its name. In Python, namespaces are implemented as 

dictionaries, so the function name is a key in this dictionary, and the function object is the value. 

 

5. Ready for Execution 

 

At this point, the function is fully defined and ready to be executed. However, it's important to note that the 

function's code has not been executed yet; the function will only be executed when it is called. 

 

When you call the function, the interpreter creates a new execution frame for that function call, pushing it onto the 

call stack. This frame contains its own namespace for local variables, references to any global or nonlocal variables 

it needs, and a pointer back to the function object's code so that the interpreter knows what bytecode to execute. 

 

In summary, when the Python interpreter encounters a function definition for the first time, it parses the 

definition, compiles the body of the function into bytecode, creates a function object containing this bytecode and 

other relevant information, and then binds this object to the function's name in the current namespace. This process 

makes the function ready for execution whenever it is called later in the program.  



106  

Now … above we have 1. Parsing the Function Definition. What does that look like? 
 

First, Python creates an Abstract Syntax Tree (AST) representation of the abstract syntactic structure of 

the source code Each node in the tree denotes a construct occurring in the source code. 

 

For example, consider: 

 

def add(a, b): 

    return a + b 

 

The AST for this function would represent the structure of the function in a hierarchical manner, breaking 

down the function definition, parameters, body, and return statement. A simplified version might look 

something like this: 

 
FunctionDef 

    ├── name: "add" 

    ├── arguments 

    │   ├── arg: "a" 

    │   └── arg: "b" 

    └── body 

        └── Return 

            └── BinOp 

                ├── Left: Name(id='a', ctx=Load()) 

                ├── Op: Add() 

                └── Right: Name(id='b', ctx=Load()) 

 

In this tree: 

 

. The root is a `FunctionDef` node, representing the function definition. 

. The `FunctionDef` node has children representing the function's name (`add`), its arguments (`a` and 

`b`), and its body. 

. The `arguments` node lists all parameters the function accepts. In this case, there are two arguments, `a` 

and `b`. 

. The `body` node contains a `Return` node, indicating that the function will return a value. 

. The `Return` node has a child `BinOp` (binary operation) node, representing the addition operation. 

. The `BinOp` node has three children: `Left`, `Op`, and `Right`. `Left` and `Right` are `Name` nodes 

representing the operands (the parameters `a` and `b`), and `Op` is an `Add` node representing the addition 

operator. 

 

In the context of the Abstract Syntax Tree (AST) for Python, `ctx` stands for "context", and it indicates 

how a variable or name is being used in that particular part of the code. The context can be one of several 

types, indicating whether a variable is being read from, assigned to, or deleted, among other possibilities. 

 

In the AST snippet above, the `ctx` is specifically marked as `Load()`, which means the variables `a` and 

`b` are being loaded from their respective locations (e.g., memory, a scope, etc.) for use in an expression. 

In this case, they are being used as operands in a binary addition operation. 

 

The different types of contexts in Python's AST include: Load, Store, Del, AugLoad, AugStore, and 

Param. 

 

 

 

 

 



107  

Python will show you a user-friendly representation of the AST by using the ast module like this: 

 

import ast 

source_code = ''' 

def add(a,b): 

    return a+b 

''' 

tree = ast.parse(source_code) 

 

Python will produce this: 
 

  
 

 

 

 

 

This structure makes it clear how the various parts of the function are organized and related to each other, 

which is useful for the interpreter during the parsing and compilation stages. 

 

 

 

 

 

 

 

 

 

 



108  

 

Then we have 2. Compilation to Bytecode. What does that look like? 

 
The bytecode generated for the `add` function is as follows: 

 

1. `LOAD_FAST` (a): This instruction loads the local variable `a` onto the stack. It's the first argument of 

the function `add`. 

2. `LOAD_FAST` (b): This instruction loads the next local variable `b` onto the stack. It's the second 

argument of the function `add`. 

3. `BINARY_ADD`: This instruction pops the top two values from the stack (which are `a` and `b`), adds 

them, and then pushes the result back onto the stack. 

4. `RETURN_VALUE`: This instruction returns the value on top of the stack to the caller of the function. 

 

Each `Instruction` in the bytecode includes the operation name (`opname`), the operation code (`opcode`), 

the argument to the operation if any (`arg` and `argval`), a representation of the argument (`argrepr`), the 

offset in the bytecode, and whether the line starts a new line of Python code or is a jump target. 

 

This sequence of instructions is what the Python interpreter executes when the `add` function is called, 

performing the addition operation and returning the result. 

 

The bytecode is essentially a tuple consisting of the following components: 

 

1. Operation Name (`opname`) 

 

The operation name (`opname`) is a human-readable string representing the operation that the bytecode 

instruction performs. For example, `LOAD_FAST` is the operation name for the opcode that loads a local 

variable onto the stack. These names are meant to be descriptive and help in understanding the purpose of 

the opcode without needing to know its numerical code. 

 

2. Operation Code (`opcode`) 

 
The operation code (`opcode`) is a numerical value that represents the specific operation to be performed. Each type 

of operation (like loading a variable, performing an addition, or returning a value) has a unique opcode. The Python 

interpreter uses this code to identify what action to take when executing the bytecode. For instance, in CPython, 

`LOAD_FAST` might have an opcode value of 124, although the exact number can vary between Python versions. 

 

3. Argument (`arg` and `argval`) 

 
arg: This is the raw numerical argument for the opcode, if any. Some operations require additional information to 

be executed properly. For example, `LOAD_FAST` needs to know which local variable to load. The `arg` value 

provides this information, usually as an index or a reference to other data structures like the constant pool or 

variable names list. 

 

argval: This represents the interpreted value of the argument. It provides a more meaningful 

representation of the `arg` value. For instance, if `arg` is an index of a local variable, `argval` would be the 

name of that variable. 

 

4. Argument Representation (`argrepr`) 

 

The argument representation (`argrepr`) is a human-readable description of the argument value (`argval`). 

It's designed to make the bytecode more understandable. For example, if the `argval` is the name of a local 

variable like `'x'`, then `argrepr` would also be `'x'`, making it clear that the operation involves the variable 

`'x'`. 



109  

 

 

5. Offset 

 

The offset indicates the position of the bytecode instruction within the bytecode sequence. It's essentially 

the "address" of the instruction in the bytecode. This is useful for understanding the flow of execution, 

especially for operations that involve jumps, as it tells you where in the bytecode sequence an instruction 

is located. 

 

6. Line Starts and Jump Targets 

 

Line Starts: This indicates whether the instruction is the first one on a new line of source code. It's useful 

for debugging and profiling, as it helps map bytecode instructions back to the lines of source code they 

came from. 

 

Jump Targets: This indicates whether the instruction is a target for jumps from other instructions. 

Control flow operations like loops and conditionals involve jumps in the bytecode. An instruction marked 

as a jump target is where the control flow might jump to during execution. 

 

Aside: Load_FAST 

 

`LOAD_FAST` is an opcode used in Python's bytecode instruction set, which is part of the Python Virtual 

Machine (PVM). The `LOAD_FAST` opcode is used to load a local variable onto the stack quickly. It's 

designed to be an efficient way to access local variables within a function. 

 

Here's a breakdown of how `LOAD_FAST` works: 

 

Local Variable Access: Each function in Python maintains its own local variables. These are stored in a 

fixed-size array where each local variable can be accessed by its index. The `LOAD_FAST` instruction 

takes advantage of this by using the variable's index to access it directly. 

Stack: The Python Virtual Machine (PVM) uses a stack-based execution model. Operations are performed 

by pushing operands onto the stack and then executing an instruction that operates on those operands. The 

results of operations are then pushed back onto the stack. 

Efficiency: The `LOAD_FAST` opcode is optimized for speed. Since local variables are frequently 

accessed during function execution, having a fast way to load these variables onto the stack is crucial for 

performance. By using the index of the variable in the local environment, `LOAD_FAST` can quickly 

fetch the variable's value and push it onto the stack. 

 

In the context of the bytecode for the `add` function: 

 

LOAD_FAST                a 

LOAD_FAST                b 

 

- The first `LOAD_FAST` instruction loads the value of the local variable `a` onto the stack. 

- The second `LOAD_FAST` instruction loads the value of the local variable `b` onto the stack. 

 

After these instructions, the top two elements on the stack are the values of `a` and `b`, ready to be used by 

subsequent operations, such as `BINARY_ADD` in the case of the `add` function. This opcode is a critical 

part of the Python bytecode execution model, contributing to the efficiency of function calls and variable 

access within functions. 

 

 



110  

 

 

An example – remember the pythonic swap” 
 

def swap(a, b): 

    a, b = b, a # tuple packing 

    return a, b 

 

Here's a breakdown of how this is implemented at the bytecode level: 

 

1. Tuple Packing: First, the values of `b` and `a` are placed onto the stack, and then Python creates a tuple 

from these values. This is the packing step, where `b, a` becomes `(b, a)`. 

 

2. Tuple Unpacking: Python then unpacks this tuple directly into the variables `a` and `b`. The first 

element of the tuple (originally `b`) is assigned to `a`, and the second element (originally `a`) is assigned 

to `b`. 

 

To actually see what is going on we can disassemble this function, and see the bytecode 

instructions that Python uses to perform the swap: 

 

First: 

 

import dis 

dis.dis(swap) 

 

The disassembled bytecode might look something like this (exact output could vary slightly depending on 

the Python version): 

 

4           0 LOAD_FAST                1 (b) 

              2 LOAD_FAST                0 (a) 

              4 ROT_TWO 

              6 STORE_FAST               0 (a) 

              8 STORE_FAST               1 (b) 

 

  5          10 LOAD_FAST                0 (a) 

             12 LOAD_FAST                1 (b) 

             14 BUILD_TUPLE              2 

             16 RETURN_VALUE 

 

Here's what happens in these instructions: 

 

- `LOAD_FAST` instructions push the values of `b` and then `a` onto the stack. 

- `ROT_TWO` swaps the top two elements of the stack. After this instruction, the top of the stack has the 

original value of `a`, and the second element from the top has the original value of `b`. 

- `STORE_FAST` instructions then pop these values off the stack and store them back in the local 

variables `a` and `b`, effectively swapping their values. 

 

In detail: 

 

 Line 4 

`0 LOAD_FAST 1 (b)`: This instruction loads the value of the local variable `b` (at index 1 in the local 

variables array) onto the top of the Python Virtual Machine (PVM) stack. 

 



111  

`2 LOAD_FAST 0 (a)`: Following that, the value of the local variable `a` (at index 0) is loaded onto the 

stack, above the previously loaded value of `b`. 

 

`4 ROT_TWO`: This instruction rotates the top two stack items. After this operation, the value of `a` 

(which was loaded second) is now below the value of `b` on the stack, effectively swapping their positions 

in the stack without using a temporary variable. 

 

`6 STORE_FAST 0 (a)`: The top value on the stack (which is now the original value of `b` due to the 

`ROT_TWO` operation) is popped off the stack and stored in the local variable `a` (at index 0). 

 

`8 STORE_FAST 1 (b)`: Similarly, the next value on the stack (which is now the original value of `a`) is 

popped off and stored in the local variable `b` (at index 1). At this point, the values of `a` and `b` have 

been swapped. 

 

 Line 5 

`10 LOAD_FAST 0 (a)`: The value of `a` is loaded onto the stack again. Note that `a` now holds the 

original value of `b` due to the swap. 

 

`12 LOAD_FAST 1 (b)`: The value of `b` is loaded onto the stack, above the value of `a`. Remember, `b` 

now holds the original value of `a`. 

 

`14 BUILD_TUPLE 2`: This instruction pops the top two values from the stack (the values of `a` and `b`) 

and builds a tuple from them. This tuple is then pushed onto the stack. 

 

`16 RETURN_VALUE`: Finally, the top value on the stack (which is now the tuple containing the 

swapped values) is returned from the function. 
 

Note:  

 

The designation "Line 4" in the bytecode disassembly output corresponds to the line number in the 

original Python source code from which the bytecode was generated. It does not indicate the fourth 

line of the bytecode itself but rather that the bytecode instructions starting from that point correspond to 

the fourth line of the source Python code. 

 

The numbers preceding the instructions in the bytecode disassembly, such as the 4 in 4 ROT_TWO, 

represent the byte offset of each instruction within the bytecode sequence. This offset indicates the 

position of the instruction in the bytecode and is used by the Python Virtual Machine (PVM) to navigate 

through the bytecode as it executes the program. 

 

Here's a breakdown of what these numbers mean: 

 

Byte Offset: The number is essentially an address within the bytecode sequence. It tells the PVM where 

each instruction starts. In the example, `4 ROT_TWO` means that the `ROT_TWO` instruction starts at 

byte offset 4 in the bytecode. 

 

Sequential Execution: The Python interpreter reads and executes bytecode instructions sequentially, 

unless an instruction explicitly alters the flow of execution (e.g., through a loop or conditional jump). The 

byte offset helps the interpreter keep track of its position in the bytecode sequence. 

 

Jump Targets: For control flow instructions that involve jumps (like `FOR_LOOP`, 

`JUMP_FORWARD`, or conditional jumps), the byte offset provides a target address to jump to. For 

example, if there's a jump instruction that says to jump forward by 6 bytes, the interpreter would move to 

the instruction 6 bytes ahead of the current instruction's byte offset. 



112  

 

 

Instruction Length: The difference between consecutive byte offsets also implicitly indicates the length 

of each bytecode instruction. Different instructions can have different lengths depending on whether they 

have arguments and how those arguments are encoded. 

 

In the context of the above example, the `ROT_TWO` instruction at byte offset 4 follows the 

`LOAD_FAST` instruction at byte offset 2. The difference in offsets also tells you that the 

`LOAD_FAST` instruction (including any potential argument it might have) takes up 2 bytes. 

 

 

Question: By looking at the bytecode it seems that the swap is being done   without a third variable. How?  



113  

Function modification at runtime 

 
Hold on to your seats …… 

 
You can modify a function in real time in Python, (but this is generally done using higher-level constructs 

like decorators which modify the functions behavior while leaving the original function intact) by 

modifying the function's bytecode directly. Here is an example: 

 

from bytecode import Instr, Bytecode 

import types 

 

def f(a, s): 

    return a + s 

 

# Convert the function's code to a mutable bytecode object 

byte_code = Bytecode.from_code(f.__code__) 

 

# Find the BINARY_ADD instruction and replace it with BINARY_MULTIPLY 

for instr in byte_code: 

    if isinstance(instr, Instr) and instr.name == "BINARY_ADD": 

        instr.set("BINARY_MULTIPLY") 

        break 

 

f = byte_code.to_code() 

f = types.FunctionType(f, globals(), "new_f") 

 

# Test the modified function 

print(f(2, 3))  # Should print '6' instead of '5' 
 

How does this work? 

 

1. `from bytecode import Instr, Bytecode` 

   - This line imports the `Instr` and `Bytecode` classes from the `bytecode` library, which allows for 

manipulation of Python bytecode. 

 

2. `import types` 

   - This imports the `types` module, which provides utility functions and types for working with different 

Python object types, including functions. 

 

3. `def f(a, s): return a + s` 

   - Here is our sample function that we want to modify. `f` is defined that takes two arguments, `a` and `s`, 

and returns their sum. 

 

4. `byte_code = Bytecode.from_code(f.__code__)` 

   - This converts the code object of the function `f` (accessible via `f.__code__`) into a `Bytecode` object 

from the `bytecode` library. The `Bytecode` object is mutable, allowing for modifications to the bytecode. 

 

5. The `for` loop iterates over each instruction in the `byte_code` object: 

   - `for instr in byte_code:` iterates through each bytecode instruction in `byte_code`. 

 

 

 



114  

 

6. `if isinstance(instr, Instr) and instr.name == "BINARY_ADD":` 

   - This checks if the current instruction (`instr`) is an instance of the `Instr` class (indicating it's an 

instruction rather than a label or other bytecode component) and if the name of the instruction is 

`"BINARY_ADD"`, which represents the addition operation in Python bytecode. 

 

7. `instr.set("BINARY_MULTIPLY")` 

   - If the condition in the previous line is true, this line changes the instruction from addition to 

multiplication by setting the instruction's name to `"BINARY_MULTIPLY"`. This effectively changes the 

operation performed by that instruction in the bytecode. 

 

8. `break` 

   - This exits the loop after modifying the first `BINARY_ADD` instruction found, ensuring that only the 

first addition operation in the function is changed to multiplication. 

 

9. `f = byte_code.to_code()` 

   - Converts the modified `Bytecode` object back into a code object suitable for execution by the Python 

interpreter. 

 

10. `f = types.FunctionType(f, globals(), "new_f")` 

    - This creates a new function from the modified code object. `types.FunctionType` constructs a new 

function object, `f`, using the provided code object, the current global namespace (`globals()`), and the 

name `"new_f"` for the new function. 

 

11. `print(f(2, 3))  # Should print '6' instead of '5'` 

    - Finally, the modified function `f` is called with arguments `2` and `3`. Since the addition operation in 

the original function `f` has been changed to multiplication, the expected output is `6` (the product of `2` 

and `3`), instead of `5` (the sum of `2` and `3`). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



115  

 

 

Creating and running code at runtime – exec and eval 
 

There is a mechanism in python to read in a string, representing a function, and at runtime, and then call 

that function by name. 

 

`exec()` and `eval()` are both built-in functions in Python that allow for the dynamic execution of Python 

code, but they serve different purposes and have distinct behaviors: 

 

exec() 
 

- `exec()` is used to execute dynamically generated Python code which can be a single statement, a 

statement block, or even a string representing a Python script. 

- It does not return any value; it only executes the code within its argument. 

- It can be used for executing dynamic Python code that includes loops, conditionals, function/class 

definitions, and so forth. 

- It can modify the current scope if used without specifying an explicit namespace, meaning it can define 

new variables or functions or change existing ones within the scope it is called. 

 

Syntax example: `exec("code")`, where `"code"` is a string containing Python statements. 

 

eval() 
 

- `eval()` is used to evaluate valid Python expressions (not statements) contained in a string and return the 

result of the expression. 

- It is essentially used for simple expression evaluation, like arithmetic calculations or evaluating 

expressions to a single value. 

- It cannot execute complex Python code like loops, conditionals, function/class definitions, etc. 

- It's useful for dynamically evaluating expressions that result in a single value, such as `'3 + 4'` or even 

calling functions that return a value. 

 

Syntax example: `result = eval("expression")`, where `"expression"` is a string containing a Python 

expression, and `result` will store the evaluated result. 

 

Key Differences 

 

Usage: `exec()` is for executing statements (including multi-line code blocks, function definitions, etc.), 

whereas `eval()` is for evaluating expressions and returning their results. 

Return Value: `exec()` does not return any value (or returns `None`), while `eval()` returns the value of 

the given expression. 

Scope Modification: `exec()` can modify the current scope or namespace, while `eval()` is generally used 

for expressions and has limited capability to modify the current scope. 

 

Careful: Due to their ability to execute arbitrary code, both `exec()` and `eval()` should be used with 

caution, especially with untrusted input, to avoid potential security vulnerabilities such as code injection 

attacks. 

 

 

 



116  

exec() example: 

 

# Define a string representing a block of Python code 

code_str = """ 

def calculate_area(length, width): 

    return length * width 

 

def print_greeting(name): 

    if name: 

        greeting = f"Hello, {name}!" 

    else: 

        greeting = "Hello, stranger!" 

    print(greeting) 

""" 

 

# Dynamically compile and execute the code block 

exec(code_str) 

 

# Now, the functions 'calculate_area' and 'print_greeting' are defined and can be called 

area = calculate_area(10, 5)  # Calling the dynamically defined function 

print(f"Area: {area}") 

 

print_greeting("Alice")  # Calling another dynamically defined function 

 

 

eval() example: 

 

# Define an arithmetic expression as a string 

expression = "(3 + 5) * 2 / (4 - 2)" 

 

# Use eval() to evaluate the expression 

result = eval(expression) 

 

print(f"The result of the expression {expression} is: {result}")  



117  

 

Scripts and Modules 
 

 

In languages like C++ or Java a distinction is made between application programs and libraries.  

 

For example, in C++ you would write a main function and perhaps some supporting functions to 

accomplish a particular task. This is an application. The Python equivalent is a script.  

 

If you needed some specific functionality, say input/output, you would #include<iostream>. iostream is 

not a “main program”, an “application”, but rather a “library”, a file containing classes, functions, 

definitions, variable declarations and initializations. Its not meant to be run as a standalone application, 

but as a collection of reated functions to support a particular functionality. iostream supports stream-

oriented i/o in C++. The Python equivalent is called a module. The math module is an example.  

 

Scripts are run as top-level applications, modules are imported. Both are .py files, the difference is in their 

intended use.  

 

You might have seen the following in python programs: 

 

if __name__ == "__main__" 

 

What is this and how does this relate scripts and modules.  

 

Do this: Make two files, module.py and import_module.py. 

 

# module.py 

def foo(): 

    print("Function foo from module.py") 

 

if __name__ == "__main__": 

    # This block of code will run only when module.py is executed directly, 

    # not when it is imported in another file. 

    foo() 

    print("module.py is being run directly") 

 

# import_module.py 

import module 

module.foo() 

 

1. When module.py is run directly (at the “top level”)we get: 

 

 
 

2. But if we run import_module  

 

we get: 

 

 
 

 

 



118  

  

 

What is going on? 
 

The `if __name__ == "__main__":` statement in Python serves a crucial purpose when it comes to writing 

Python modules that can be run as scripts or imported into other modules.  

 

Script vs. Module: Python files can act both as reusable modules and as standalone scripts.  

`if __name__ == "__main__":` allows a Python file to distinguish between these two use cases, executing 

some code only when the file is run as a script and not when it's imported as a module. 

 

Encapsulation: This statement encapsulates the "executable" part of the code, making it clear which part 

of the module is meant to execute as a script. This is especially useful for readability and maintainability. 

 

How It Works 
 

`__name__` Variable: When a Python file is executed, Python sets several special variables, and 

`__name__` is one of them. If the file is being run as a script, `__name__` is set to `"__main__"`. If the 

file is being imported as a module into another file, `__name__` is set to the name of the file/module. 

 

Use Cases 

 

1. Running Tests: You can include a test suite within the `if __name__ == "__main__":` block of a 

module, allowing you to run tests only when the module is executed directly. 

 

2. Demonstration and Documentation: For modules that define functions, classes, or other components, 

you can include examples of how to use these components within the `if __name__ == "__main__":` 

block. This serves both as a demonstration of functionality and as basic usage documentation. 

 

3. Utility Scripts: When creating utility scripts that can also be imported as modules, use this block to 

contain the script logic, allowing the script to be both directly executable and importable for use in other 

modules. 

 

4. Application Entry Point: In larger applications, the `if __name__ == "__main__":` block can be used 

in the main application file as the entry point to the application, invoking the main function or starting the 

main application loop. 

 

Sometimes this idiom might look like this: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



119  

# Define a function to do something 

def greet(name): 

    print(f"Hello, {name}!") 

 

# define some more functions to do other things  

 

……. And perhaps more functions  

 

# Define the main function to encapsulate the script's primary logic 

 

def main(): 

    # Call the greet function with a name 

    greet("Alice") 

  # You can add more logic here in the main that should execute when the script runs directly 

 

# This idiom checks if the script is being run directly (not imported as a module) 

if __name__ == "__main__": 

    # If so, call the main function 

    main() 

 

This structure is similar to the `main()` function in C++ programs, which serves as the entry point for execution.  
  



120  

Lists, Strings, Tuples, and Other Sequences 

The following 2 pages are for reference. 

 
Sequences represent ordered sets of objects indexed by nonnegative integers and include 

strings, (including Unicode strings) lists, and tuples. Strings are sequences of characters, and lists and 

tuples are sequences of arbitrary Python objects. Strings and tuples are immutable; lists allow 

insertion, deletion, and substitution of elements. All sequences support iteration. 

 

Don’t worry! All the strange terms above will be explained below. 

 

Operations and Methods Applicable to All Sequences 
 

Item Description 

s[i] Returns element of a sequence 

s[i:j] Returns a slice 

s[i:j:stride] Returns an extended slice 

len(s) Number of elements in s 

min(s) Minimum value in s 

max(s) Maximum value in s 
 
 

 
Operations Applicable to Mutable Sequences 

Item Description 

s[i] = v Item assignment 

s[i:j] = t Slice assignment 

s[i:j:stride] = t Extended slice assignment 

del s[i]  Item deletion 

del s[i:j] Slice deletion 

del s[i:j:stride] Extended slice deletion 

 

Lists are sequences of arbitrary objects. 

You create a list as follows: 

names = [ “Dave”, “Mark”, “Ann”, “Phil” ] 

 

Lists are indexed by integers, starting with zero. Use the indexing operator to access and modify 

individual items of the list: 

 

a = names[2] # Returns the third item of the list, “Ann” 

names[0] = “Jeff” # Changes the first item to “Jeff” 

 

To append new items to the end of a list, use the append() method: 

names.append(“Kate”) 



121  

To insert an item in the list, use the insert() method: 

names.insert(2, “Sydney”) 

 

You can extract or reassign a portion of a list by using the slicing operator: 

b = names[0:2] # Returns [ “Jeff”, “Mark” ] 

c = names[2:] # Returns [ “Sydney”, “Ann”, “Phil”, “Kate” ] 

names[1] = ‘Jeff’ # Replace the 2nd item in names with ‘Jeff’ 

names[0:2] = [‘Dave’,’Mark’,’Jeff’] # Replace the first two items of 

# the list with the list on the right. 

 

Use the plus (+) operator to concatenate lists: 

a = [1,2,3] + [4,5] # Result is [1,2,3,4,5] 

 

Lists can contain any kind of Python object, including other lists, as in the following example: 

a = [1,”Dave”,3.14, [“Mark”, 7, 9, [100,101]], 10] 

Nested lists are accessed as follows: 

a[1] # Returns “Dave” 

a[3][2] # Returns 9 

a[3][3][1] # Returns 101 

 
List Methods 

Method Description 

list(s) Converts s to a list. 

s.append(x) Appends a new element, x, to the end of s. 

s.extend(t) Appends a new list, t, to the end of s. 

s.count(x) Counts occurrences of x in s. 

s.index(x [,start [,stop]]) Returns the smallest i where s[i]==x. 

start and stop optionally specify the starting and ending index for the 

search. 

s.insert(i,x) Inserts x at index i. 

s.pop([i]) Returns the element i and removes it from the list. If i is omitted, the last 

element is returned. 

s.remove(x) Searches for x and removes it from s. 

s.reverse() Reverses items of s in place. 

s.sort([keyf [, reverse]]]) Sorts items of s  in place.  
Keyf is a key function. Reverse 
is a flag that sorts the list in reverse order. 



122  

We will start with  
Lists 

 

 

A list in Python is a mutable sequence of any time of Python object. 

What does this mean?? 

Example: 

 

x=[1,23,”hello” , [3.4]] 

 

x is the name of the list. It has 4 elements: 

 

• the integer 1 

• the integer 23 

• the string “hello” 

• the list [2,3] 

 

It looks something like this in memory. 
 
 



123  

We create a new empty list in one of two ways: 

 

• x=[] 

• x=list() 

or, as above, we can create a list with elements just by listing the elements in the square  

brackets “[“ , “]”. 

 

Question: 

 

How do we access individual elements of a list? 

 

Answer: 

 

We use square brackets with an integer to “index” into the list.  

 

For example: 

 

 

Notice: 

 

1. The positions in the list are numbered from 0 (not 1). In the above example, this means that the last 

element in the lost is accessed as x[3]. 

 

2. Since x[3] in our example is the list [3,4] we can access its elements by using a second index. That is 

why x[3][0] is the “zeroth” (i.e. first) element of [3,4], which is 3. 

 

3. Since there is no element in the list x[4] (they are x[0], x[1], x[2], x[3]) we are trying to access a 

nonexistent element and Python prints an error message. 

 

Question: 

 

Can we change (i.e. replace) elements of a list? 

 

Answer: 

 

Yes. Here is an example where we modify the list x above. 



124  

 
 

We can find out the size (=length) of a list by using the len() function: 
 
 

 

We say that a list is mutable. This means that is can be modified (i.e. “mutated). 
 

Problem: 

Given:  

a=[[1,2],[3,4],[5,6]] 

what is : 

 

list(a) 

list(list(a)) 

list((list(a))) 

 

Why? 

 

 

What about: 

 

[a] 

[[a]] 

[[[a]]] 

 

Why? 

 

  



125  

 

How can we add elements to an existing list? 
 

Answer: 

 

There are a number of different ways. We start with two functions: 

 

• append – add “something” to the end of a list 

• extend – add all the elements of some sequence at the end of a list



126  

Make sure the example above is absolutely clear! 

 

del and .clear 

 
Say we have a=[1,2,3] 

 

If we write a.clear() then a will be []. 

 

 

 
But if we write del a we get: 

 

 
 

Remember in Python everything is an object and names are really pointers to objects. And an object may be pointed 

to many times.  

 

Each object has a reference count and you can check the reference count of an object using the 

getrefcount() function from the sys module.  

 

>>> import sys  

 
 

This function returns the reference count of the object passed to it. It's important to note that getrefcount() 

itself adds a temporary reference to the object, so the count returned will be one higher than the number of 

references you might expect. 

 

Notice that del b didn’t delete the list. When you use the del statement in Python, such as with del i, it 

unbinds the name i from the object it references. Essentially, del removes the binding of a name from the 

local or global namespace, depending on where the name was defined. It does not directly delete the 

object itself; rather, it just removes one reference to the object.  

 

When the reference count of an object goes to zero, its marked eligible for garbage collection.  

 

 



127  

What about .clear()? 

 

 

 
 

 

Problem: 

 

a, b, and c are as above. What will happen if we run the following: 

 

d=[a,b,c] 

for i in d: 

    del i 

 

print(d) 

 

Why? 

  



128  

 

 

So, to summarize:  

 

Note: In this summary I include data types that we haven’t studied in detail yet, however we can refer to 

this later on. 

 

The del statement and the .clear() method serve different purposes in Python and operate on different 

types of targets: 

 

del Statement 

• Purpose: The del statement is used to delete objects in Python. It can be used to remove individual 

items from a list or to delete entire variables or objects from the namespace. 

• Applicability: 

• Variables: You can use del to remove a variable and its reference to an object from the 

namespace, which can potentially free up the object for garbage collection if there are no 

other references to it. For example, del a removes the variable a. 

• List Items: You can delete an item from a list by its index, e.g., del my_list[2], which 

removes the item at index 2 from my_list. 

• Slices: You can remove a slice from a list, e.g., del my_list[1:3], which removes items 

from index 1 up to but not including index 3. 

• Dictionary Entries: You can delete a key-value pair from a dictionary, e.g., del 

my_dict['key'], which removes the specified key and its associated value from my_dict. 

•  

.clear() Method 

• Purpose: The .clear() method is used to remove all items from a mutable collection, leaving the 

collection empty but still defined in the namespace. 

• Applicability: 

• Lists: When you call .clear() on a list, it removes all elements, making the list empty ([]). 

For example, my_list.clear() clears all elements from my_list. 

• Dictionaries: Calling .clear() on a dictionary removes all key-value pairs, leaving an 

empty dictionary ({}). For example, my_dict.clear() clears all entries from my_dict. 

• Sets: Similar to lists and dictionaries, calling .clear() on a set removes all elements, leaving  

an empty set (set()). 

 

Key Differences 

• Scope: del can be used more broadly to delete variables or specific items within objects, whereas 

.clear() specifically empties an entire mutable collection. 

• Effect on Namespace: del can remove the name binding from the namespace entirely (e.g., 

deleting a variable), while .clear() only affects the contents of the object but leaves the variable in 

the namespace, now referring to an empty collection. 

• Type of Operation: del is a statement in Python, while .clear() is a method that is called on 

objects of specific types (like lists, dictionaries, and sets). 

 

 

The takeaway:  use del when you need to remove items or variables, and use .clear() when you want to 

empty a mutable collection but keep the empty collection around. 

 

  



129  

A peek under the hood … 
 

What happens internally when we write something like this: 

 

d=[1,2,3]  

del d[0]  

 

When you perform the operation `del d[0]` on a list `d` in Python, several internal steps are involved to 

update the list: 

 

1. Removal of the Element: The first element in the list (`d[0]`) is removed. This operation decreases the 

reference count of the object that `d[0]` was pointing to. If this was the only reference to that object, and 

no other references exist elsewhere in your program, the object becomes eligible for garbage collection. 

 

2. Shifting of Subsequent Elements: To maintain the contiguous nature of the list, all elements that 

followed the removed element (`d[1]`, `d[2]`, etc.) are shifted one position to the left. This means that the 

element that was at `d[1]` moves to `d[0]`, `d[2]` moves to `d[1]`, and so on. This shift ensures there are 

no "gaps" in the list. 

 

3. Size Adjustment: Internally, the list object adjusts its recorded size to reflect the removal of an 

element. The capacity of the underlying array that stores the list elements (which is typically larger than 

the number of elements to accommodate growth) might not change immediately upon the deletion of a 

single element. The Python list implementation may keep some empty space in the underlying array for 

efficient addition of new elements. 

 

It's worth noting that the actual memory allocation and deallocation are handled by the Python memory 

management system and can be influenced by various factors, including implementation details of the 

Python interpreter you're using (like CPython, PyPy, etc.). The Python list is implemented as a dynamic 

array, which means it can grow or shrink as elements are added or removed, but the resizing of the 

underlying array (either growing or shrinking its allocated memory) doesn't necessarily happen with every 

addition or removal operation due to considerations for efficiency and performance. 

 

To summarize: `del d[0]` removes the first element from the list `d`, shifts subsequent elements to fill the 

gap, adjusts the size of the list, and may eventually lead to adjustments in the allocated memory for the 

list, depending on the implementation and the state of the list. 

 

Problem: 

 

Here is an attempt to write my own version of clear(). Does my version accomplish the same thing as the 

built in one? Why or why not. (what about sub-lists …) 

 

def my_clear(lst): 

    for i in range(len(lst) - 1, -1, -1): 

        del lst[i] 

 

a = [1, 2] 

b = [3, 4] 

c = [a, 5, b, 6] 

 

# Using my_clear 

my_clear(c) 

 

 



130  

Interned objects 
 

As noted above, when the reference count of an object goes to zero, its marked eligible for garbage 

collection. There is an interesting exception: the “interned” values. Consider: 

 

i=5 

del i 

 

i now has a reference count decreased by 1. If there are no other references to the integer 5 elsewhere in 

your program, its reference count would become 0, making it eligible for garbage collection. However, in 

Python, small integers (typically between -5 and 256) are interned, meaning they are reused and never 

garbage collected, so the reference count change for the integer 5 will not lead to its deallocation. 

 

In Python, small integers (typically in the range of -5 to 256) are implemented as "interned" objects. This 

means that instead of creating a new object each time a small integer is needed, Python uses a pre-

existing, pre-allocated object for that integer value. These interned integers are, in a sense, singleton 

objects for their respective values, and any reference to such an integer actually points to the same object 

in memory. 

 

Interning Details 

 

1. Interned objects are singletons: When you assign a small integer to a variable, Python doesn't create a 

new integer object; it assigns a reference to the existing interned object representing that integer. This is 

efficient in terms of both memory usage and execution speed, as it reduces the number of integer objects 

that need to be created and managed. 

 

2. Attributes: Even though integers in Python are objects and have attributes and methods (you can use 

`dir(1)` to see them), the way Python handles small integers does not affect how you interact with them. 

You can use these integers just like any other number in Python, and the fact that they are interned is 

mostly transparent to the user. 

 

3. Pointers: Variables assigned with small integers essentially hold pointers to these pre-allocated integer 

objects. When you do `a = 1`, `a` holds a pointer to the interned object for `1`. 

 

4. Universally Available: These interned integer objects are created at the start of the Python interpreter 

and are available globally. Any reference to a small integer in any part of a Python program will point to 

the same interned object. 

 

5. Comparison and Identity: Because all references to a given small integer point to the same object, both 

equality (`==`) and identity (`is`) checks work the same for these interned integers. For example, `(1 == 

1)` and `(1 is 1)` both evaluate to `True`, not just because the values are equal, but also because both 

expressions are referring to the same object in memory. 

 

Beyond Small Integers 

 

For integers outside of the small integer range, Python may create new integer objects each time. 

However, the behavior can be implementation-specific and may vary. In such cases, two variables with 

the same integer value might not necessarily point to the same object, and an identity check (`is`) could 

evaluate to `False`. 

 

 

 



131  

Lists and loops 

 
List and loops are made for each other! 

 
 

 
 

Problem: 

 

Write a program that creates a list with the integers 1 – 10. Using a for loop add up all the elements of 

the list and print the sum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem: 

 

Write a program that creates a list with the integers 1 – 10. Using a for loop, add up all the elements of 

the list that are even and print the sum. 

 

 

 



132  

 

 
 

Problem: 

 

Write a program that creates a list with the integers 1 – 10. Using a for loop add up all the elements of 

the list that are odd and print the sum. 

 

 

 

 

 

 

 

 

 

 

 

Problem: 

 

Write a program that creates a list with the integers 1 – 10. Using a for loop add up all the elements of 

the list that are in even positions ( 0 is even) and print the sum. 

 

 

 

 

 

 

 

 

Problem: 

 

Write a function delete_at_even_position(x) where x is a list of integers. So that if  

when we run  

 

d = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 

 

delete_at_even_position(d) 

print(d) 

 

we get [1,3,5,7,9] 

 

 

 

 

 

 

 

 

 



133  

 

 

When using lists, it is often convenient to have Python generate some random values for us. Python 

provides a module called random that has some useful functions for this purpose. The two that we will 

use most are: 

 

• random and 

• randint 

 

 
So .. 

 

Function “random()” generates a random floating point number from zero up to but not including 

1. 

 

Function randint(a,b) generates a random integer in the range a to b inclusive. Note that a and b here 

are integers. 

 
 

Problem: 

 

Write a program to fill a list of size 10 with random integers in the range 1 – 10 and print it out. 



134  

Problem: 

 

Modify the program above so that we print the list as well as the maximum integer in the list. Do this 

two ways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem: 

 

Modify the program above so that it also prints the position in the list where the maximum element was 

found. 



135  

Problem: 

 

Using the code from the program above write a function 

 

getmax(x,i) #x is a list and i is an integer 
 

which will find and return the maximum element among the first i elements of list x. 
 

getmax will return two values: 

 

• the maximum element found, and 

• the position in list x where that element was found. 

 

 

For example, say a=[4,2,7,1,45,23], then getmax(a,4) will search for the maximum element in the first 

4 element of list a. 

 

So, in this case it will look at the following numbers: 2,4,7,1, and getmax(a,4) will return 7,2. This 

because in the first 4 elements, the largest is 7 and it is in position 2. 

 

If we ran getmax(a,6) the function will return 45,4. 
 

 

 

 

 

 

 

 

 

Problem: 
 

Generate all the primes between 2 and 100. 

Solution: 



136  

The Sieve of Eratosthenes provides an efficient solution.  

 

This algorithm is over 2200 years old! It's named after the Greek mathematician Eratosthenes. The 

beauty of this algorithm lies in its simplicity and efficiency, making it one of the most efficient ways to 

find all primes smaller than 10 million or so, especially when the range is not too large. 

 

Here is the Wikipedia description: http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes 

as well as an animation of the algorithm. 
 

To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: 

 

The algorithm works by iteratively marking the multiples of each prime number starting from 2. The key 

insight is that every non-prime number is a multiple of some prime number. By systematically marking 

the multiples of each prime as non-prime, we can sift through a list of integers and identify the primes. 

 

Here's a step-by-step explanation of how the algorithm works: 

 

1. Initialization: Start with a list of Boolean values representing each number in the range, initialized to 

`True` (indicating potential to be a prime), except for 0 and 1, which are set to `False` because they are 

not prime by definition. 

 

2. Iterate over numbers: Begin with the first prime number, 2, and iterate over the range. For each 

number (i) that is still marked as True (indicating it is a prime), proceed to mark its multiples as False 

(indicating they are not primes). 

 

3. Optimization: The marking of non-primes starts from i^2 because, for any prime i, multiples less 

than i^2 (like (2i, 3i, …, (i-1)i)) would have already been marked as non-prime by smaller primes. 

Increment the marking by (i) (marking (i^2, i^2 + i, i^2 + 2i, …)) as these are the multiples of i. 

 

4. Completion: The process continues until all numbers in the list have been considered. The numbers 

marked as True at the end of this process are the primes in the given range. 

 

Below is an implementation of the Sieve of Eratosthenes in Python, designed to find all prime numbers 

up to a specified limit. This implementation follows the described algorithm, utilizing a list of Booleans 

to represent the sieve and employing optimizations to enhance efficiency. 

 

  

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes


137  

 

 
 

 

 

 

 

 

n = 101  # We want to find primes up to and including 100 

sieve = [True] * n  # Initialize the sieve with True values 

sieve[0] = sieve[1] = False  # 0 and 1 are not primes 

 

for i in range(2, int(n**0.5) + 1):  # Only go up to the square root of n 

    if sieve[i]:  # If i is a prime 

        # Set all multiples of i to False 

        for j in range(i*i, n, i):  # Start from i*i, as smaller multiples would have already been marked 

            sieve[j] = False 

 

# Done! Now print the list of primes. 

for i in range(n): 

    if sieve[i]: 

        print(i) 

 

 

 
 

 

  



138  

Let’s take a break! 
 

Here is a really interesting 

Microsoft/Google/Wall Street Interview Question! 

1. Run the following program: 
 

from math import sqrt 

from random import random 

count=0 

for i in range(1000000): 

x=random() 

y=random() 

if sqrt(x*x+y*y)<1: 

count+=1 

 

print(4*(count/1000000)) 

 

2. What is it calculating? 

 

 

 

3. How/why does it work? What is the theory behind this? 

 

 

 

  



139  

 

Monte Carlo Method 
 

The Monte Carlo method, named after the Monte Carlo Casino in Monaco due to its reliance on random 

chance, is a computational algorithm that uses repeated random sampling to obtain numerical results 

 

The first documented application of the Monte Carlo method was in the simulations of neutron diffusion, a 

key process in the chain reactions required for nuclear fission. The method proved to be extremely useful 

in providing approximate solutions to complex mathematical problems that were otherwise unsolvable 

using deterministic numerical methods. 

 

The method was formally developed by scientists working on the Manhattan Project at Los Alamos 

National Laboratory, with notable contributions from Stanislaw Ulam and John von Neumann. The need 

for a new approach arose from the complexities involved in solving problems related to the physics of 

nuclear reactions, which were critical for the development of the atomic bomb.The Monte Carlo method 

has since become a fundamental tool in various scientific fields, including physics, chemistry, finance, and 

engineering.  

 

The provided code above is a simple implementation of the Monte Carlo method to approximate the value 

of Pi (π) and demonstrates solving problems through the use of randomness and probability. This 

particular implementation uses random points to estimate the area of a quarter circle, which in turn helps 

to approximate Pi. 

 

Here's a breakdown of the code and how it works: 

 

1. Code Overview: 

• The sqrt function from the math module is used to calculate the square root. 

• The random function from the random module generates random floating-point numbers 

between 0.0 and 1.0. 

• count is initialized to 0 and will be used to count the number of points that fall inside the 

quarter circle. 

• A loop runs 1,000,000 times, each time generating a random point (x, y) where x and y 

both range from 0 to 1. 

• For each point, it checks if the point lies inside the quarter circle inscribed within the unit 

square by using the equation sqrt(x*x + y*y) < 1. If so, the count is incremented. 

• After all iterations, the fraction of points that fell inside the quarter circle is multiplied by 4 

to approximate Pi. 

2. What it Calculates: 

• The code is calculating an approximation of Pi (π). The value of Pi is related to the area of 

a circle, and by estimating the area of a quarter circle and then multiplying by 4, we can 

approximate the value of Pi. 

3. Theory Behind the Method: 

• The code uses a probabilistic model to estimate the area of a quarter circle. Since the exact 

area of a circle with radius 1 is π, the area of a quarter circle would be π/4. 

• The unit square that bounds this quarter circle has an area of 1. By randomly generating 

points within this square, the proportion of points that fall inside the quarter circle should 

approximate the ratio of the quarter circle's area to the square's area, which is π/4. 

• Thus, by multiplying the proportion of points inside the quarter circle by 4, we get an 

approximation of π. 

• This method works due to the Law of Large Numbers in probability theory, which states 

that the results of performing the same experiment a large number of times should 

converge to the expected value. In this case, as the number of points increases, the 

approximation becomes closer to the true value of π. 



140  

Slicing lists 

What is a slice of a list? 

 

If x is a list then the slice x[a:b]is the “sub-list” of the elements of the elements of a from index 

position a up to but not including index position b. 
 
 

 

If we want to indicate that the slice starts at the beginning of the list, we can leave out the start value: 
 
 

 

If we want to indicate that the slice goes all the way to the end of the list, we can leave out the end 

value: 

 

 
Leaving out both the start and end indexes is the same as saying the whole list. So: 

 



141  

What can we do with a slice of a list? 

 

1. As we saw above, we can create a new list form a slice. 

 

2. We can assign to a slice and thereby replace one sub-list by another. 
 
 

 

Notice that this is a generalization of accessing and replacing one list element as in a[1]=12 which just 

replaced a single list element. 

 

When we use a slice we can indicate a stride. 
 

Huh? 

 

The stride is the length of the “step” that you take going from one element to the next when creating the 

slice. 

 

In the following example 2 is the stride. 
 
 

 
We can assign a list to a slice with a stride, but the list on the right hand side of the assignment must 

be the same size as the list produced by the slice. In the following example, both are of size 4. 
 
 

Note: The right hand side of a slice assignment can be any iterable (a string for example) and can be of 

any length. But if the slice has a stride, the list on the right hand side of the assignment must be the 

same size as the list produced by the slice.. 

 



142  

 

Problem: 

 

 

Recall we had difficulty writing the function delete_at_even_positions(x). 

 

Would something like this solve our problem? 

 

d = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

print(d[1:len(d):2]) 

 

def delete_at_even_positions(x): 

    del x[1:len(x):2] 

         

delete_at_even_positions(d) 

print(d) 

 

Look at it carefully before you run the code. Then run the code to verify your analysis.  

 



143  

Sorting 

 

Sorting is an operation on a list that orders the list elements in a specific order. 
 

For example: 
 

1. A list of names may be sorted in “lexical” =dictionary=alphabetical order. 

Here is a formal definition of lexical order from Wikipedia: 

The name of the lexicographic order comes from its generalizing the order given to words in 

a dictionary: a sequence of letters (that is, a word) 

a1a2 ... ak 

appears in a dictionary before a sequence 

b1b2 ... bk 

if and only if at the first i where ai and bi differ, ai comes before bi in the alphabet. 

That comparison assumes both sequences are the same length. To ensure they are the same length, the 

shorter sequence is usually padded at the end with enough "blanks" (a special symbol that is treated as 

coming before any other symbol). 

Note that we can order the names in reverse order, from latest to earliest. In this case the words still are 

in lexicographic order, but from the last element to the first. 

2. A list of integers may be listed in either from smallest to largest or vice versa. 

 

 
Why sort? 

 

It turns out that sorting is one of the most important operations that programs perform. Two examples. 
 

1. Searching a list. In order to find a specific element in a list we often sort it first. A sorted list can be 

searched much more quickly than one that is unsorted. Imagine looking up a phone number in a phone 

book (list) with a million entries. If the list is unsorted, we might need to look at 1,000,000 entries. If it 

is sorted, we don’t need more than 20. 

2. A Scrabble dictionary. We might want to bring all the words with the same letters next to each 

other in the list. So if we got the letters ‘opts’ we would like to have stop, pots, and tops all next to one 

another. Imagine that we had a function called “signature()” that transforms each of stop, tops and post 

➔ opts. Then if D is the list of dictionary words then 
 

D.sort(key=signature) 

would do this for us. We will actually do this later on. 



144  

Problem: 
 

Given a list of integers, sort it so that its elements will be in ascending order. 
 

Selection Sort 
 

Here is the beginning of the Wikipedia entry. http://en.wikipedia.org/wiki/Selection_sort 
 

The algorithm divides the input list into two parts: the sublist of items already sorted, which is built up 

from left to right at the front (left) of the list, and the sublist of items remaining to be sorted that occupy 

the rest of the list. Initially, the sorted sublist is empty and the unsorted sublist is the entire input list. 

The algorithm proceeds by finding the smallest (or largest, depending on sorting order) element in the 

unsorted sublist, exchanging it with the leftmost unsorted element (putting it in sorted order), and 

moving the sublist boundaries one element to the right. 

Here is an example of this sort algorithm sorting five elements: 
 

 
64 25 12 22 11 

11 25 12 22 64 

11 12 25 22 64 

11 12 22 25 64 

11 12 22 25 64 

 

 

 

And here is a simple (but not very efficient) implementation. 

It uses two new list functions. 

a=[4, 2, 7, 1, 45, 23] 

 

def select_sort(x): 

for i in range(len(x)-1): 

y=x[i:] # each time through the loop look for the minimum from position i to the end. 

m=min(y) 

pos=x.index(m,i,len(x)) # find the index of the first element with value m in the range [i,len(x) 

) x[i],x[pos]=x[pos],x[i] # swap the element at position i with the element at position pos 

 

select_sort(a) 

print(a) 

 

Notice that this function uses two list functions min() and index(). In the following, s is a list. 

 

min(s) which returns the smallest item of s 

s.index(x[, i[, j]]) which return smallest k such that s[k] == x and i <= k < j 

In the index function i and j are optional. If omitted index searches the whole list. If item x is not found 

in list s, Python returns an error. In general, we should first as Python “x in s” before using the index 

function. In function select_sort() we don’t have to do this since we know that m exists. 

http://en.wikipedia.org/wiki/Selection_sort


145  

Question: Can you detect two inefficiencies in the implantation above? 

Answer: 

 

 

 

 

 

 

 

 

The following is a more efficient implementation of the same algorithm. 

def select_sort(x): 

for i in range(len(x)-1): 

m=x[i] 

pos=i 

for j in range(i,len(x)): 

if x[j]<m: 

m=x[j] 

pos=j 

x[i],x[pos]=x[pos],x[i] 

 

Questions: 
 

Why is it more efficient? 

 

 

 

 

 

 

 

Why does the outer for loop have range(len(x)-1) but the inner loop has range(i,len(x))? 



146  

 

Definition: A sort is stable if it guarantees not to change the relative order of elements that compare equal 

— this is helpful for sorting in multiple passes (for example, sort by department, then by salary grade). 

 

Insertion Sort 

def insertion_sort(arr): 

    # Traverse through 1 to len(arr) 

    for i in range(1, len(arr)): 

        key = arr[i] 

        # Move elements of arr[0..i-1], that are greater than key, 

        # to one position ahead of their current position 

        j = i - 1 

        while j >= 0 and key < arr[j]: 

            arr[j + 1] = arr[j] 

            j -= 1 

        arr[j + 1] = key 

    return arr 

 

arr = [12, 11, 13, 5, 6] 

insertion_sort(arr) 

print("Sorted array is:", arr) 

 

Question: Is insertion sort stable? How do you know? 

 

Characteristics of Insertion Sort: 

 

Best Case Scenario: The best case occurs when the array is already sorted. Here, the algorithm only 

makes a single comparison per element, leading to a runtime complexity of O(n). 

 

Worst Case Scenario: The worst case occurs when the array is sorted in reverse order. Every element has 

to be compared with all the other elements already sorted (to its left), leading to a runtime complexity of 

O(n^2). 

 

Stability: Insertion Sort is stable; it does not change the relative order of elements with equal keys. 

 

In-Place: It is an in-place sorting algorithm, as it only requires a constant amount O(1) of additional 

memory space. 

 

On line: can process its input piece-by-piece in a serial fashion, i.e., it can sort a list as it receives it, 

without needing the entire list beforehand.. 

 

Insertion Sort's simplicity and the fact that it is in-place and stable make it useful for small datasets and as 

part of more complex algorithms like Timsort. 

 

Is insertion sort more efficient that selection sort? Why/how? 

 

 



147  

 

 

Insertion sort can be made more efficient by using a binary search to find the insertion point for the new 

element. 

 

def binary_search(arr, val, start, end): 

    """Find index to insert val within arr[start:end] via binary search.""" 

    while start < end: 

        mid = (start + end) // 2 

        if arr[mid] < val: 

            start = mid + 1 

        else: 

            end = mid 

    return start 

 

def binary_insertion_sort(arr): 

    for i in range(1, len(arr)): 

        val = arr[i] 

        # Find the position to insert the current element 

        pos = binary_search(arr, val, 0, i) 

        # Shift elements to the right to make space for the current element 

        arr[pos+1:i+1] = arr[pos:i] 

        # Insert the current element into its correct position 

        arr[pos] = val 

    return arr 

 

# Example usage 

arr = [37, 23, 0, 17, 12, 72, 31, 46, 100, 88, 54] 

sorted_arr = binary_insertion_sort(arr) 

print(sorted_arr) 

 

Then, of course, there is merge sort. 

 

Merge Sort is a classic divide-and-conquer algorithm that divides the array into halves, recursively sorts 

each half, and then merges the sorted halves back together.  

 

1. Divide: Split the array into two halves. 

2. Conquer: Recursively sort each half. 

3. Combine: Merge the sorted halves to produce a single sorted array. 

 

Key Properties: 

 

Divide-and-Conquer: Merge Sort divides the problem into subproblems, solves them independently, and 

combines their solutions. 

Stable: It does not change the relative order of elements with equal keys. 

Not In-Place: In its typical implementation, it requires additional space proportional to the array being 

sorted. 

Time Complexity: O(n log n) in all cases (best, average, and worst). 

 

Merge Sort is particularly well-suited for large datasets and performs consistently well due to its O(n log 

n) time complexity. Its main drawback is the need for additional space, making it less space-efficient 

compared to some in-place sorting algorithms. 

 



148  

def merge_sort(arr): 

    if len(arr) > 1: 

        # Finding the mid of the array 

        mid = len(arr) // 2 

 

        # Dividing the array into two halves 

        L = arr[:mid] 

        R = arr[mid:] 

 

        # Sorting the first half 

        merge_sort(L) 

 

        # Sorting the second half 

        merge_sort(R) 

 

        # Merging the sorted halves 

        merge(arr, L, R) 

 

def merge(arr, L, R): 

    i = j = k = 0 

 

    # Copy data to temp arrays L[] and R[] 

    while i < len(L) and j < len(R): 

        if L[i] < R[j]: 

            arr[k] = L[i] 

            i += 1 

        else: 

            arr[k] = R[j] 

            j += 1 

        k += 1 

 

    # Checking if any element was left 

    while i < len(L): 

        arr[k] = L[i] 

        i += 1 

        k += 1 

 

    while j < len(R): 

        arr[k] = R[j] 

        j += 1 

        k += 1 

 

arr = [38, 27, 43, 3, 9, 82, 10] 

merge_sort(arr) 

print("Sorted array is:", arr) 

 

- The `merge_sort` function first checks if the array has more than one element. If it does, it finds the 

midpoint and splits the array into two halves, `L` and `R`. 

- It then recursively calls itself to sort `L` and `R` separately. 

- Once `L` and `R` are sorted, it calls the `merge` function to combine these sorted halves into a single 

sorted array. 

 

  



149  

Sorting … a third way, using Python’s two built-in sorting functions: sort() and sorted(). 

 

1. sort() – is a method of the list class and is a stable sort 

 

Let a be a list. 
 

 

Important: a.sort() will sort the elements in a, thereby changing a. 

 

Notice: function sort() takes 2 optional key word arguments: 

 

• key 

• reverse 

 

key specifies a function of one argument that is applied to the list elements before the comparison is 

made. 

 

reverse specifies that the list should be in reverse order. That means that “>” is used for comparison 

rather than “<”. 

 

Why is it called a “keyword argument”? 

 

Because if you want to use it, you need to use the “keyword=value” syntax. We have seen keyword 

arguments before. 

 

Say, for example, we want to sort a list of strings. String comparison depends on capitalization as 

in the following example. If we wanted to discount the capitalization in the comparison we could use 

the lower() function. 

 

 

 

 

 

 

 

 

 

 

 

The default value for key is None.  



150  

 

 

What about the keyword argument “reverse”? 

Here is an example. 

 



151  

Problem: 

 

Given a list, print the elements of that list in reverse order. Do this in two ways. 

 

 

 

 

 

 

 

 

 

 

 

 
Problem: 

 

Given a list reverse the elements of the list. For example if 

x=[1,2,3], then after it is reversed x would be [3,2,1]. 

Do this in two ways. 



152  

2.  sorted() 

 

While .sort() can only be used with lists, sorted() can be used on any iterable. 

 

The sorted function will create a new list. 

 

 
 

See the difference between sort() and sorted(): 

 

 
 

Note: The built-in sorted() function is guaranteed to be stable.  

 

 

We saw the use of the keyword reverse, what about the keyword key? 

 

Key Functions 
 

As we saw above, both list.sort() and sorted() have a key parameter to specify a function (or other 

callable) to be called on each list element prior to making comparisons. That is, if f() is the key function 

then  instead if comparing elements a and b , f(a) and f(b) are compared instead. 

 

For example, here’s a case-insensitive string comparison: 

 

>>> sorted("This is a test string from Andrew".split(), key=str.lower) 

['a', 'Andrew', 'from', 'is', 'string', 'test', 'This'] 

 

In the above example, the function, lower(), is predefined for string objects, but we can use our own 

functions as well.  

 

The value of the key parameter should be a function (or other callable) that takes a single argument and 

returns a key to use for sorting purposes. This technique is fast because the key function is called exactly 

once for each input record. 

 

 

In the context of sorting, (and others as we will see later) it is quite common to use a special kind of 

function called a “lambda expression.” 

mk:@MSITStore:C:/Users/waxman/AppData/Local/Programs/Python/Python39/Doc/Python395.chm::/library/functions.html#sorted


153  

 

lambda Expressions 
 

The lambda expression is an anonymous—unnamed—function with the following form: 

 

lambda args: expression 

 

where args is a comma-separated list of arguments, and expression is an expression involving those 

arguments.  

 

Here’s an example: 

 

a = lambda x, y: x + y 

r = a(2, 3)            # r gets 5 

 

The code defined with lambda must be a valid expression. Multiple statements, or nonexpression 

statements such as try and while, cannot appear in a lambda expression. 

 

A common pattern is to sort complex objects using some of the object’s indices as keys.  

 

For example: 

 

>>> student_tuples = [ 

...     ('john', 'A', 15), 

...     ('jane', 'B', 12), 

...     ('dave', 'B', 10), 

... ] 

>>> sorted(student_tuples, key=lambda student: student[2])   # sort by age 

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)] 

 

 

The key-function pattern is very common, so Python provides convenient functions to make accessor 

functions easier and faster. The operator module has the itemgetter() (also attrgetter(), and a 

methodcaller() which we will see later) function. 

 

Using those functions, the above becomes simpler and faster: 

 

>>> from operator import itemgetter, attrgetter 

 

>>> sorted(student_tuples, key=itemgetter(2)) 

[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)] 

 

Problem: Explain the result: 

 

 



154  

Tim sort - the sort of sort Python uses in its sorts. 
 

We studied Binary Insertion Sort and Merge Sort.  

 

While Insertion Sort has its advantages, such as simplicity, low overhead for small arrays, and efficiency 

when the data is nearly sorted, Merge Sort offers significant benefits for large datasets, including 

consistent O(n log n) performance, stability, suitability for external sorting, and the potential for 

parallelization.  

 

Timsort is a sophisticated sorting algorithm that combines the best aspects of Merge Sort and Binary 

Insertion Sort, designed to perform optimally on various kinds of real-world data, including those with 

ordered sequences (runs) and random distribution. It is the default sorting algorithm in Python (used by 

`sorted()` and `list.sort()`) and Java's Arrays.sort() for objects.  

 

Core Principles: 

 

1. Adaptive: Timsort adapts to the structure of the data, efficiently handling both partially ordered and 

random datasets by leveraging existing order. 

   

2. Stable: It maintains the relative order of equal elements, crucial for multi-level sorting based on 

multiple attributes. 

 

3. Efficient for Small Data: It uses Binary Insertion Sort for small arrays or to extend short runs, 

benefiting from its low overhead. 

 

4. Minimizes Comparisons: Timsort employs a galloping mode in its merge function to skip over large 

portions of data when possible, reducing the number of comparisons. 

 

How Timsort Works: 

 

1. Identifying Runs: Timsort starts by scanning the dataset to identify naturally occurring sorted 

sequences (runs). These runs can be either ascending or descending; descending runs are reversed to 

maintain consistency. 

 

2. Minrun Selection: The algorithm chooses a minimum run size (`minrun`) based on the size of the array 

to ensure a balance between the number of runs and their sizes. This helps in optimizing the performance 

across different datasets. 

 

3. Extending Runs: If a run is shorter than `minrun`, Timsort uses Binary Insertion Sort to extend it. This 

step benefits from the insertion sort's efficiency on small datasets while ensuring that all runs meet the 

minimum size requirement. 

 

4. Merging Strategy: Timsort maintains a stack of pending runs to be merged. It uses specific invariants 

(related to the sizes of the runs) to decide which runs to merge next. This adaptive approach ensures 

efficient merging by balancing the sizes of runs being merged and reducing the total number of merge 

operations. 

 

5. Galloping Mode: During the merge process, if one run's elements are consistently "winning" over the 

other's, Timsort switches to galloping mode. This mode uses binary search to find the point up to which 

elements from the winning run can be merged in one go, significantly reducing the number of 

comparisons. 

 



155  

Practical Considerations: 

 

• Timsort is designed to perform well on a wide variety of data distributions, making it a versatile 

and reliable sorting algorithm for real-world applications. 

• Its stability and adaptiveness to the existing order in the data make it particularly useful for 

datasets that are not completely random, which is often the case in practical scenarios. 

• The algorithm's complexity lies in managing the run stack and deciding the optimal merging 

strategy, which involves keeping track of the size of runs and applying the merge invariants. 

 

Takeaway: 

 

Timsort's ingenious combination of Binary Insertion Sort and Merge Sort, along with its adaptive merging 

strategy and galloping mode, make it an outstanding general-purpose sorting algorithm. It excels in 

handling real-world data, offering a blend of efficiency, stability, and adaptability that is hard to match.  

   



156  

Copying lists 
 

Let a=[1,2,3]. We want b to be a copy of a. How do we do this?  
 

1. How about b=a? 

 

 
But if we the write b[0]=4, we get: 

 

 
 

2. How about: 

 

 
 
Or: 

 

 
 

3. But what about: 

 

 

 

  



157  

 
 

Not exactly what we wanted. 

 

4. How about: 

 
 

This works!  
 

But ….what about if the list elements were dictionaries, or sets, or other structures containing circular 

references or …. The world is complicated. 
 

 

The copy module. 
 

Enter the copy module. It contains copy (a shallow copy) and deepcopy ( a deep copy). deepcopy is 

much more sophisticated than the recursive copy above. It handles all the data types and edge cases.  
 

The difference between them lies in how they treat complex objects that contain other objects, like lists or 

dictionaries. 
 

Shallow Copy (`copy`) 

 

A shallow copy creates a new object, but instead of copying the nested objects, it just copies the 

references to them. This means the new object is a separate instance, and changes to the top-level object 



158  

won't affect the copy. However, if the original object contains other objects (like a list containing other 

lists), changes to these nested objects will be reflected in both the original and the shallow copy because 

they both refer to the same nested objects. It’s like the copy we wrote above.  

 

For example: 

 

import copy 

 

original_list = [[1, 2, 3], [4, 5, 6]] 

shallow_copied_list = copy.copy(original_list) 

 

shallow_copied_list[0][0] = 'X'  # Modifying a nested object 

 

print(original_list)  # Output: [['X', 2, 3], [4, 5, 6]] 

print(shallow_copied_list)  # Output: [['X', 2, 3], [4, 5, 6]] 

 

As you can see, changing a nested element in the shallow copy also affects the original list. 

 

Deep Copy (`deepcopy`) 

 

A deep copy creates a new object and recursively copies all the objects it contains. Unlike a shallow copy, 

the deep copy doesn't just copy references to nested objects; it creates copies of the nested objects as well. 

Therefore, changes to any level of the copied object won't affect the original object. 

 

For example: 

 

import copy 

 

original_list = [[1, 2, 3], [4, 5, 6]] 

deep_copied_list = copy.deepcopy(original_list) 

 

deep_copied_list[0][0] = 'X'  # Modifying a nested object 

 

print(original_list)  # Output: [[1, 2, 3], [4, 5, 6]] 

 

Here, changing a nested element in the deep copy does not affect the original list. 

 

The takeaway: 

 

Shallow Copy: Creates a new object but does not create copies of nested objects; it only copies their 

references. Changes to nested objects in the copy will affect the original. 

 

Deep Copy: Creates a new object and recursively copies all objects contained within it, including nested 

objects. Changes to any part of the deep copy won't affect the original object. 

 

The choice between shallow and deep copying depends on the complexity of the object being copied and 

whether changes to the copy should affect the original object.  



159  

We can write our own simple versions of copy and deepcopy: 
 

If you want to write a custom function to shallow copy a list in Python, you can do so by creating a new 

list and adding all elements from the original list to it. This can be done in several ways, such as using a 

loop, list comprehension, or the list() constructor. Here's an example using list comprehension, which  

def shallow_copy(lst): 

    # Create a new list with the same elements as 'lst' 

    copied_list = [] 

    for item in lst: 

 copied_list.append(item) 

    return copied_list 

 

This function creates a shallow copy of the list, meaning that if the list contains nested lists or other 

mutable objects, those nested objects will not be copied; instead, both the original and copied lists will 

reference the same nested objects. 

For a deep copy function that can handle nested lists you can use recursion: 

def deep_copy(lst): 

    copied_list = [] 

    for item in lst: 

        # If the item is a list, recursively call deep_copy 

        if isinstance(item, list): 

            copied_list.append(deep_copy(item)) 

        else: 

            copied_list.append(item) 

    return copied_list 

 

original_list = [1, [2, 3], 4, [5, [6, 7]]] 

copied_list = deep_copy(original_list) 

 

print("Original List:", original_list) 

print("Copied List:", copied_list) 

 

To check that in fact a deepcopy has been made, change an element in the copied list and compare it to the 

original one. 

 

copied_list[1][0] = 'X' 

print("Modified Copied List:", copied_list) 

print("Original List After Modification:", original_list) 

print("Original List After Modification:", original_list) 

 

This deep_copy function checks each item in the input list: if the item is a list itself, it recursively copies 

that list; otherwise, it simply appends the item to the new list. This way, you get a new list that's a deep 

copy of the original, including all nested lists. 

 

This function is specifically designed to handle nested lists, and it will not correctly handle other mutable 

types like dictionaries or sets. The function checks if an item is a list (isinstance(item, list)) and only then 

does it perform a recursive deep copy. For other types, it simply appends the item to the new list, which 



160  

means dictionaries, sets, and other mutable objects would be shallow copied, sharing references between 

the original and copied structures. 

To make the function more general and capable of deep copying structures that may include dictionaries, 

sets, or other mutable types, you'd need to enhance its type checking and handling.. 

Here’s an extended version of the deep_copy function that can handle lists, dictionaries, and sets. It does 

not cover all edge cases or types but demonstrates how you might extend the functionality: 

def deep_copy(obj): # this code is incomplete – a general idea of what needs to be done  

    if isinstance(obj, list): 

        return [deep_copy(item) for item in obj] 

    elif isinstance(obj, dict): 

        return {deep_copy(key): deep_copy(value) for key, value in obj.items()} 

    elif isinstance(obj, set): 

        return {deep_copy(item) for item in obj} 

    else: 

        # For simplicity, other types are not deeply copied. 

        # This includes custom objects, which might require special handling. 

        return obj 

 

# Example usage with a complex structure 

original_structure = [1, [2, {'a': 3, 'b': {4, 5}}, 6], 7] 

copied_structure = deep_copy(original_structure) 

 

print("Original Structure:", original_structure) 

print("Copied Structure:", copied_structure) 

 

Keep in mind that for a fully robust deep copy implementation, you would need to handle many more 

cases, and it's generally recommended to use Python's built-in copy.deepcopy() for this purpose, especially 

in production code or complex scenarios. 

 

  



161  

Two dimensional lists 

Many important applications use data that is represented in a 2-dimensional table. 
 
 

 
How do we represent this in Python? 

 

We simply use a list of lists. 
 

a=[ [10,20,30],[40,50,60],[70,80,90] ] 

Notice that the length of list a is 3 (len(a)==3), but it’s made up of three lists, each one of length 3. 

 

 
Problem: 

 

Change element with a 50 to 500. 

Solution: 

The 50 is the second element of the second list. Recalling that lists are indexed starting with 0, we 

write: 

 



162  

Nested loops and two-dimensional lists 

Even though a list is “really” is a list of lists, when we program its useful to think of it as a two 

dimensional table. 

So, for the list a above, we can consider it a table with three rows and three columns. The rows and 

columns are each indexed starting at 0. We will say that he position with entry 500 is at row 1 and 

column 1. 

We saw how lists and loops are “made for each other.” The same is true with two dimensional lists (we 

will sometimes refer to the as two dimensional “arrays”. This is what they are called in many other 

programming languages (though they are implemented differently). 

Problem: 
 

Print list a above so that each “row” of it prints a separate row. 
 
 

 

And formatted … 

 



163  

Problem: 
 

Create a 4X4 array and initialize each of the elements to 0. 

Solution: 

a=[] 

for i in range(4): 

a.append(4*[0]) 

 
What does 4*[8] mean? 

 

Python lets us use + and * with lists. 
 
 

 

So from here you see + is concatenate i.e. it acts like the list function extend. But you can only 

+ a list to a list, not a string to a list like you can with extend. 

 

What about “*” ? 
 
 



164  

Make sure that you can explain each of the following: 

 

 
The first example: 

 

 

 

 

The second example: 

 

 

 

 

The third example: 

 

 

 

 

 

The fourth example (below). Does this produce the same result as third example above? 
 
 



165  

Notice when we print list a, both seem to produce the same list: 
 

 
 

 
However, internally they are represented very differently. 

 
 

The first one produces the following when it runs: 
 
 

 
 

What are the implications of this? 

 

 

 

 

 

 
The second one, however, produces this: 

 

 
 

What are the implications of this? 


