Generators

What is the difference between:

1. print(sum([1,2,3,4,5]))
2. print(sum(range(1,6)))
3. print(sum(i for i in range(1,6)))

since they all print 15?
Answer

The three code snippets all compute and print the sum of numbers from 1 to 5, resulting in 15, but they
differ in their implementation details, primarily around how they handle data in memory:

1. “print(sum([1,2,3,4,5])):

- Data Structure: This uses a list [1, 2, 3, 4, 5] explicitly defined with all the elements in memory at
once.

- Memory Usage: The numbers are all stored in memory simultaneously, making this approach less
memory-efficient for large data sets.

- Clarity: It's very clear and straightforward, showing exactly which numbers are being summed.
2. print(sum(range(1,6))) :
- Data Structure: “range(1, 6)° creates a range object that generates numbers on-the-fly from 1 to 5.

- Memory Usage: More memory-efficient, as ‘range” does not store all the numbers at once but
produces them one at a time as needed during the iteration.

- Clarity: Still clear and concise, and the ‘range” function is commonly used in Python for generating
sequences of numbers.

3. ‘print(sum(i for i in range(1,6))) :

- Data Structure: This uses a generator expression (i for i in range(1, 6))" which also generates
numbers on-the-fly.

- Memory Usage: Similarly to ‘range’, this method is memory-efficient because it doesn't hold all the
elements in memory simultaneously but yields them one by one.

- Flexibility: Offers more flexibility than “range” alone, as you can easily add more complex
conditions or transformations to each element before they are summed.

Summary:

- The first example explicitly creates a list, which is simple and very clear but less memory-efficient for
large data.

- The second and third examples are more memory-efficient and suitable for large data sets or where
memory usage is a concern. They generate numbers as needed without storing them all at once.

- The third example, using a generator expression, is particularly versatile for more complex data
processing needs before the summation step, allowing for easy incorporation of additional operations
on the elements.

Here is a problem.

Write a function f with the following behavior: each time f is called it returns the next positive even
integer less than 10. So, the first time it is called it returns 2, the next time 4 and so on.

Answer:

Problem
Now do it without global variables.
Review of iterators: What is an iterable and what is an iterator?

The terms "iterable” and "iterator™ in Python are closely related but serve different roles in the process
of iteration:

Definition: An iterable is any Python object that can return its members one at a time, permitting it to
be iterated over in a loop. Common examples include lists, tuples, sets, dictionaries, strings, and even
file objects. We will later when we build our own classes that we can create iterables as well.

You typically interact with iterables when you use loops (like a “for" loop) or other functions that
expect something they can iterate over (like ‘sum()", etc.).

Definition: The iterable implements its “one at a time” behavior via an associated iterator. An iterator
is an object that represents a stream of data. It produces successive items when you call its “next()
method on it. Once the items are exhausted, further calls to "next()" raise a "Stoplteration™ exception.

Under the hood

For the iterable, the key method that it must implement is ~__iter_ ()". This method is called to obtain

an iterator from it.
2

For the iterator, the key method must implementi~__iter_ ()". This method is called to obtain an
iterator fromitand ~__next ().

" __iter__(): Returns the iterator object itself. This is required to allow both iterators and iterables to
be used in for loops and other iteration contexts.

" next__()": Returns the next item from the iterator. When there are no more items, it should raise
“Stoplteration”. When we are interacting wih an iterator wecan use either __next_ ()": or next(itrator
name).

So:
Creating an Iterator: An iterator is obtained from an iterable. When you iterate over an iterable (like a
list), Python automatically calls the *__iter__ ()" method of the iterable to get an iterator (or iter()).

Iterating: The actual process of iteration over an iterable is done via an iterator. When you use a loop
to go over an iterable, Python internally uses the iterator obtained from that iterable to fetch items one
by one using __next_ ()

Example

my _list=[1, 2, 3] # This is an iterable
my_iterator = iter(my_list) # Obtaining an iterator from the iterable

foriin my_list:
print(i)

for _in my _iterator:

print(_)

Iterating using the iterator via next()
print(next(my _iterator)) # Outputs: 1
print(next(my_iterator)) # Outputs: 2
print(next(my_iterator)) # Outputs: 3

equivalently:

Iterating using the iterator with the __next__ () method

print(my_iterator.__next_ ()) # Outputs: 1

print(my_iterator.__next_ ()) # Outputs: 2

print(my_iterator.__next_ ()) # Outputs: 3

The next call would raise Stoplteration

Generators in Python are like factories that produce a sequence of values, one at a time.

Generators are created using a special type of function that uses the yield keyword to produce values
on-the-fly. It also is “stateful”, it keeps the state of the function between calls. It doesn’t exit once it
3

returns a value, it rather stays “alive” till all the expected values have been generated and returned to
the caller.

Generator functions are like normal functions in most respects, and in fact are coded with

normal def statements. When a generator function is called, it doesn’t return a value, rather it returns a
generator object that can be iterated over, just like a list, but it generates values only when requested.
This makes generators very efficient, as they generate values only when needed, and they can be used
to generate large sequences of values that cannot fit into memory at once. A simple example of a
generator function is one that generates a sequence of even numbers.

For example:
def even_numbers(n):
i=0
while i <n:
yield i
i +=2
The function above is a generator function, it uses the “yield” keyword.
even_gen = even_numbers(10)
even_gen is a generator object and it can be iterated over like any other iterable.
for num in even_gen:
print(num)
Another example:
def countdown(n):
print('Counting down from’, n)
while n > 0:
yield n
n-=1
for x in countdown(10):
print('T-minus’, X)

If you call this function, you will find that none of its code starts executing. For example:

>>> ¢ = countdown(10)
>>> ¢

<generator object countdown at 0x105f73740
> >>>

What happens is that a generator object is created. The generator object, in turn, only executes the
function when you start iterating on it.

next
We saw that we can do this with the for loop. Another way is to call next() on it:

>>> next(c)

Counting down from 10
10

>>> next(c)

9

When next() is called, the generator function executes statements until it reaches a yield statement. The
yield statement returns a result, at which point execution of the function is suspended until next() is
invoked again. While it’s suspended, the function retains all of its local variables and execution
environment. When resumed, execution continues with the statement following the yield.

next() is a shorthand for invoking the __next__ () method on a generator. For example, you could also
do this:

>>>c._ next_ ()
8

>>>c._ next_ ()
.

>>>

Problem:

Write a generator that will yield the “next” prime number each time that it’s called.

5

Problem:

Write a generator that will yield the “next” leap year each time that it’s called.

Problem:

Using a generator, create a dictionary such that d[i] is mapped to the i prime number.
Can you also do this with a dictionary comprehension?

I.e. make this work:

def prime_dict(n):

prime_generator = gen_primes()
return {i: next(prime_generator) for i in range(1, n + 1)}

Problem:

Write a generator get oct() that will produce the next octal number each time it’s called. The value
should be a string, so that when the octal number 20 is produced (this is the octal representation for the
decimal 16) the generator will return ‘20°.

Problem:

Write a generator fib that will produce the next Fibonacci on demand.

Problem:

Write a generator that produces “serial numbers” according to the following rule: a serial number is a
ten-character string where

e the first two characters are upper-case alphabetic and
o the following eight are numeric.

The alphabetic portion will be all strings from AA through ZZ in lexicographic order (AA,AB,AC ...).
For each alphabetic prefix, the numeric part will be all strings 00000000 — 99999999. So we have
AA00000000, AA00000001 ...ZZ99999999.

Answer

Problem:

Write a generator sensor_monitor(states)that monitors a device that periodically sends either a 1 or a
0. The generator keeps track of the number of zeros between receiving a 1. They call that number the
gap. Each time a value is received the generator yields the gap.

For example, say the received sequence is:
runs=[1,1,0,1,1,0,0,0,1,1,1,1,0,1,0,0,1]
and when we call sensor_monitor(runs)
then the generator will output:
[0,0,1,0,3,0,0,0,1,2,0]

Answer

Sequence of received states
runs=[1,1,0,1,1,0,0,0,1,1,1,1,0,1,0,0, 1]
Function to create a generator that monitors gaps

def sensor_monitor(states):
gap=0
for state in states:
if state == 1:
yield gap
gap=0
else:
gap +=1

Creating the generator

monitor = sensor_monitor(runs)

Using the generator to get the outputs
output = list(monitor)

print(output)

How does this work?

This program initializes the sensor_monitor generator with the list runs. The sensor_monitor function
iterates through each item in runs. It yields the gap (the number of zeros) each time a 1 is encountered
and resets the gap counter. After creating the generator monitor, the script collects all outputs into a list
and prints it. The output will be [0, 0, 1,0, 3,0, 0, 0, 1, 2, O], as each number represents the number of
zeros since the last 1.

Where/when/how does the generation happen? What role does the list constructor play?

The generator "monitor’ is called implicitly when its outputs are collected into a list using the line
“output = list(monitor) .

Here’s what happens in detail:

1. Creating the generator: ‘monitor = sensor_monitor(runs)" initializes the generator called "monitor’
with the sequence “runs’. At this point, the generator is ready but hasn't processed any of the input
sequence yet.

2. Collecting outputs into a list: The expression “list(monitor)™ is where the generator "monitor" is
actually called and executed. This line does the following:

- The “list()" function iterates over the generator ‘monitor-.

- As list()" retrieves each value from the generator, ‘monitor™ executes its code from the last "yield”
to the next “yield" (or until the sequence ends if there's no more “yield").

- For each 1" encountered in the sequence “runs’, the generator "yield's the current value of “gap’,
which represents the count of consecutive zeros encountered since the last "1".

- The yielded "gap” values are collected by “list()" and added to the “output’ list.

3. Resetting the gap: Inside the generator, each time a "1" is found in the sequence ‘runs’, the "gap is
yielded and then reset to zero (‘'gap = 0°). If a "0 is found, the "gap" is incremented by one ("gap +=
1.

4. Resulting output: The “print(output)” line outputs the list [0, 0, 1,0, 3,0, 0, 0, 1, 2, 0] to the
console. Each element of this list corresponds to the count of zeros that appeared in the sequence “runs’
between occurrences of "1°.

Here is a question.

The list() function is basically a constructor for a list object, so how dost it end up doing the
iteration?

While that the “list()" function is essentially a constructor, it also has the capability to iterate over
iterable objects, such as generators. When passed a generator, “list()" constructs a new list by repeatedly
calling the "next()" function on the generator object until it raises a "Stoplteration™ exception, which
signifies the end of the generator.

Here's how the process works in the context of the generator:

1. Initialization: When “list(monitor)" is called, “list()" starts by calling "next(monitor)’. This begins
the execution of the “sensor_monitor™ generator's code.

2. lteration and Collection:

- Each call to "next(monitor)” resumes the generator's execution from the point of the last "yield"
statement.

- The generator runs until it hits the next "yield" statement, at which point it yields a value (in this
case, the current "gap” count).

- The value yielded by the generator is collected by "list()", which then calls “next(monitor)™ again to
get the next value.

- This loop continues: the generator runs, yields the next value, and pauses until the next “next()" call.
3. Handling Stoplteration:

- Once the generator has no more values to yield (i.e., the for loop inside the generator finishes
processing all items in “states’), it naturally completes its execution and implicitly returns. In Python,
when a generator or any iterator returns, it raises a “Stoplteration™ exception.

- “list()" catches this "Stoplteration™ exception, understands that there are no more items to process,
and stops calling "next()".

4. Final List Creation:

- The “list()" function now has all the values yielded by the generator stored internally. It finalizes the
construction of the list with these collected values and returns it.

Thus, while the “list()” function is indeed a constructor, its interaction with generators (and other
iterable objects) includes iteratively calling "next()" to retrieve all the values until the generator is
exhausted, effectively converting the stream of yielded values into a static list. This is a common
pattern in Python for consuming all values from a generator when you want all the results at once and
are okay with them being stored in memory.

But still ...

The generators that we have encountered have produced values each time that they are called as well
as preserving their state between those calls. Indeed, that is what they do ... they generate values.

But realistically in the example we just looked at we have a situation where we would receive inputs,
possibly respond, and then wait for the next “signal” sent to us from some other process, all the while
preserving the sate of the function.

In the above problem we got all the inputs at once in the list states. But if we wanted to model a more
realistic situation we would like our generator to receive inputs each time it is called.

Enter coroutines

Coroutines extend the concept of generators. While a generator is primarily used to produce values,
coroutines can both produce and consume values. They are defined with “def” (like regular functions

10

and generators), but use “yield", "yield from", or "await" to suspend their execution and transfer control
back to the caller. The key difference is that coroutines can also receive data after yielding, which
allows for two-way communication between the coroutine and its caller.

For the above problem imagine that we have a “producer” sending the ones and zeros to a “consumer”
that is minding the gaps and sending out the gaps as before. Python has many powerful ways to do this
including the async module and threading.

Let’s look at a simpler example here:
import random

def sensor_monitor():
zero_count=0

while True:
state = (yield zero_count) # state is where the generator get the value from the producer
if state == 1:
zero_count=0
else:

zero_count +=1

def main():
monitor = sensor_monitor() # monitor is the iterator
next(monitor) # Prime the generator

for _in range(20): # Run for 20 iterations
Producer: Generate a random 0 or 1
produced = random.randint(0, 1)
print(f"Produced: {produced}")

Consumer: Process the produced value
gap = monitor.send(produced)
print(f""Consumed: {produced}, Gap: {gap}")

main()
and here is a step-by-step explanation:
1. Initialization of the Sensor Monitor Generator:

- ‘monitor = sensor_monitor()" creates a generator object named “monitor .

- “next(monitor)" is then called to 'prime’ the generator.

11

This initial call advances the generator to the first "yield statement, which yields “zero_count’
initialized to "0". This first yielded value is not captured or utilized, as its purpose is primarily to
prepare the generator to receive values. Notice that it is not assigned to any variable. It just ensures the
generator is in a ready state to process incoming data via “send() .

2. Starting the Loop:

- A'loop is set up to run for 20 iterations. This loop represents the main execution block where both
production and consumption of values will take place.

3. Simulating the Producer:

- “produced = random.randint(0, 1)" simulates the action of generating sensor data by producing a
random integer (O or 1).

- “print(f"Produced: {produced}")" displays the generated value, indicating that it has been 'produced'.
4. Simulating the Consumer:

- "gap = monitor.send(produced)” sends the produced value to the "monitor™ generator, which
processes this value by calculating the gap (number of zeros since the last one) and yields this gap
back.

- The gap value is then printed alongside the consumed value, indicating that the consumer has
processed the value and determined the current gap.

5. Repeat:

- The loop continues, repeating this process of producing a random value and consuming it by
calculating the gap. Each iteration represents a new cycle of production and consumption.

6. End of Loop:

- After 20 iterations, the loop ends. At this point, the program has simulated 20 cycles of producing
and consuming sensor data.

This approach of interleaving the producer and consumer operations within a single loop is a
straightforward way to demonstrate the concept without involving concurrency. It sequentially
simulates the production of data and its consumption, showing how each piece of data is processed in
order.

Problem:

Referring to the problem above. Imagine that the sequence of 1s and Os represents the state of some
security sensor, 1 if available, zero if not. If the gap between Os exceeds some user defined n, the
generator should return a warning and return. Write the modified generator.

12

A generator function produces items until it “returns” (since it’s a function after all)—by

e reaching the end of the function or
e by using a return statement.

Restartable Generators (as a class) — we will see this later
Normally a generator function executes only once. For example:

>>> ¢ = countdown(3)
>>> forninc:
print('T-minus’, n)

T-minus 3

T-minus 2

T-minus 1

>>>forninc:
print(‘'T-minus', n)

>>>

If you want an object that allows repeated iteration, define it as a class and make the __iter () method
a generator:

class countdown:

def __init__(self, start):
self.start = start

13

def __iter__ (self):
n = self.start
while n > 0:
yield n
n-=1
This works because each time you iterate, a fresh generator is created by __iter_ ().

14

