
1

Decorators

Recall that:

A function can define a new function inside itself as well as return the function.

def f(x):

 def sq(z):

 return z*z

 return sq(x)

A function is a first-class object and so can be assigned to a variable.

def f(x):

 def sq(z):

 return z*z

 return sq(x)

g=f

print(g(3))

We get

The name of a function is a pointer to the function object.

So, if we write sum=0, this breaks the connection to the built-in sum function.

These ideas allow us to define “decorator” functions in Python.

Note: for a nice introduction see https://www.geeksforgeeks.org/decorators-in-

python/ or https://www.programiz.com/python-programming/decorator

https://www.geeksforgeeks.org/decorators-in-python/
https://www.geeksforgeeks.org/decorators-in-python/
https://www.programiz.com/python-programming/decorator

2

A decorator is a function that creates a “wrapper” around another function.

In Python, a decorator is a function that takes another function and extends or modifies its

behavior without explicitly modifying its code.

The primary purpose of this wrapping is to alter or enhance the behavior when you call the

original function without changing the code of the original function in any way.

For example, you might want to print a message whenever a given function is entered and again

when it is exited. You could accomplish this by changing the functions by adding the appropriate

print functions. But … say you don’t have access allowing you to modify the function so this

method wont work.

Or say you are debugging a system and you would like to have many different functions report

on their entry and exit. It would be time consuming to modify all of them. Among other uses,

decorators provide an answer to this problem.

Example: (run this)

def my_decorator(func):

 def wrapper():

 print("Something is happening before the function is called.")

 func()

 print("Something is happening after the function is called.")

 return wrapper

def say_whee():

 print("Whee!")

say_whee = my_decorator(say_whee)

say_whee()

Let’s generalize

The function

def add_numbers(x, y):

 return x + y

adds two numbers and returns the sum.

3

Say that you would like to print a message when add_numbers is entered and when it exits. You

can do it with decorators like this:

1. Define a function (for this example call the function “log_function_call”) that takes the

original function (call original function func) as an argument and makes a “sandwich”

around f that

a. Prints that func has entered

b. Calls func to do the work

c. Prints that func has exited.

We call the sandwich a “wrapper”.

The “log_function_call” function returns the wrapper functions. This is easier to

understand by just looking at the code.

This is the decorator function

def log_function_call(func):

 def wrapper(*args, **kwargs):

 print(f"Calling function {func.__name__}")

 result = func(*args, **kwargs)

 print(f"Finished calling function {func.__name__}")

 return result

 return wrapper

This is the function to be decorated

def add_numbers(x, y):

 return x + y

This says that the log_function_call function will “decorate” the add function

@log_function_call

def add_numbers(x, y):

 return x + y

Now you call add_number(2,3)

result = add_numbers(2, 3)

print(result)

This is equivalent to (as we saw in the first example)

add_numbers= log_function_call(add_numbers(2,3))

4

result = add_numbers(2, 3)

print(result)

In general:

Syntactically, decorators are denoted using the special @ symbol as follows:

@decorate

def func(x):

 ...

The preceding code is shorthand for the following:
def func(x):

 ...

func = decorate(func) # decorate is the name of the decorator in this example

So the original function name is associated with the decorated function.

In the example, a function func() is defined.

• However, immediately after its definition, the function object itself is passed to the

function decorate(),

• which returns an object that replaces the original func. (i.e. the new object is assigned

to the original name func)

We can run this in the emulator to see exactly the control path during program execution.

There is a problem, however. In practice, functions also contain metadata such as the

function name, doc string, and type hints. If you put a wrapper around a function, this

information gets hidden. When writing a decorator, it’s considered best practice to use

the @wraps() decorator, for example:

def my_decorator(func):

 def wrapper(*args, **kwargs):

 """ wrapper"""

 print("Before the function is called.")

 result = func(*args, **kwargs)

 print("After the function is called.")

 return result

 return wrapper

5

@my_decorator

def my_function(x,y):

 """ my func"""

 return x+y

z=my_function(2,3)

print(z,my_function.__name__)

print(z,my_function.__doc__)

When I run this, I expect the function name to be “my_function” and the doc string to be """ my

func""". But here is what I get:

Before the function is called.

After the function is called.

5 wrapper Wrong function name

5 wrapper Wrong doc string

>>>

The solution

from functools import wraps

The @wraps() decorator copies various function metadata to the replacement function. In this

case, metadata from the given function func() is copied to the returned wrapper function call().

So now we have:

import functools

def my_decorator(func):

 @functools.wraps(func)

 def wrapper(*args, **kwargs):

 """ wrapper"""

 print("Before the function is called.")

 result = func(*args, **kwargs)

 print("After the function is called.")

 return result

 return wrapper

@my_decorator

def my_function(x,y):

 """ my func"""

 return x+y

6

z=my_function(2,3)

print(z,my_function.__name__) # Output: "my_function"

print(z,my_function.__doc__)

When decorators are applied, they must appear on their own line immediately prior to the

function.

Now that we have the decorator we can apply it to any function we like. Say you have a function

def mult(x,y):

 return x*y

I can decorate it like this:

import functools

def my_decorator(func):

 @functools.wraps(func)

 def wrapper(*args, **kwargs):

 """ wrapper"""

 print("Before the function is called.")

 result = func(*args, **kwargs)

 print("After the function is called.")

 return result

 return wrapper

@my_decorator

def mult(x,y):

 """ mult func"""

 return x*y

z=mult(2,3)

print(z,mult.__name__) # Output: "my_function"

print(z,mult.__doc__)

and I get

Before the function is called.

After the function is called.

6 mult

6 mult func

7

Understanding the process

Functions in Python are decorated at the time they are defined, not when they are called. The

decoration process is part of the function definition and occurs immediately after the function

object is created, but before the function is actually called for the first time.

Here's how it works:

1. Function Definition: When Python encounters a function definition, it creates a function

object. This includes parsing the function's code and setting up its name, parameters, and

the code to execute.

2. Applying the Decorator: If the function definition is preceded by one or more decorator

expressions, each decorator is applied as soon as the function object is created. A

decorator is essentially a callable that takes a function object as an argument and returns a

new function object. The original function object is replaced by the one returned by the

decorator.

3. Final Function Object: The final function object, which might have been modified or

completely replaced by the decorators, is then bound to the function's name in the current

namespace.

4. Function Calls: When the decorated function is later called, it's the modified version of

the function (as returned by the decorator) that is executed, not the original version.

So, for example

def my_decorator(func):

 def wrapper():

 print("Something is happening before the function is called.")

 func()

 print("Something is happening after the function is called.")

 return wrapper

@my_decorator

def say_hello():

 print("Hello!")

At this point, say_hello is already decorated

say_hello()

in this example

• The say_hello function is defined.

• Immediately after its definition, my_decorator is applied to say_hello.

8

• The my_decorator function takes say_hello as an argument, wraps additional

functionality around it, and returns the wrapper function.

• The name say_hello now refers to the wrapper function, not the original say_hello

function.

• When say_hello() is called, it's actually the wrapper function that gets executed.

This illustrates that the decoration process is part of the function's creation and definition

phase, not the call phase.

Can we have multiple decorators applied to the same function?

Yes.

When you apply multiple decorators to a function, they are applied from the innermost (closest

to the function definition) to the outermost (farthest from the function definition). This means the

decorator closest to the function is applied first, and then the next closest, and so on, up to the

outermost decorator.

Consider:

def decorator1(func):

 def wrapper(*args, **kwargs):

 print("Decorator 1")

 return func(*args, **kwargs)

 return wrapper

def decorator2(func):

 def wrapper(*args, **kwargs):

 print("Decorator 2")

 return func(*args, **kwargs)

 return wrapper

def decorator3(func):

 def wrapper(*args, **kwargs):

 print("Decorator 3")

 return func(*args, **kwargs)

 return wrapper

@decorator3

@decorator2

@decorator1

def my_function():

 print("Hello, World!")

my_function()

9

In this example, `my_function` is decorated with `decorator1`, `decorator2`, and `decorator3`.

Here’s how the decorators are applied:

1. Innermost Decorator: `decorator1` is applied first because it is the closest to the function.

2. Middle Decorator: `decorator2` is applied next, wrapping the result of `decorator1`.

3. Outermost Decorator: `decorator3` is applied last, wrapping the result of `decorator2`.

When `my_function()` is called, the execution flow is as follows:

1. `decorator3`'s `wrapper` function is executed first.

2. Inside `decorator3`'s `wrapper`, `decorator2`'s `wrapper` is executed.

3. Inside `decorator2`'s `wrapper`, `decorator1`'s `wrapper` is executed.

4. Finally, `decorator1`'s `wrapper` calls the original `my_function`.

So, the output will be:

Decorator 3

Decorator 2

Decorator 1

Hello, World!

This shows that decorators are applied from the innermost to the outermost, but they are

executed from the outermost to the innermost when the decorated function is called.

10

Note also that the decorated function is its own object, distinct from the original function

object. When a function is decorated, the decorator takes the original function object as an input

and typically returns a new function object. This new function object usually wraps or modifies

the behavior of the original function. As a result, the original and decorated functions are two

different function objects.

In general

1. Original Function Object:

• When you define a function, Python creates a function object for it. This object

represents the function with its original behavior.

2. Applying the Decorator:

• A decorator is a callable (usually another function) that takes a function object as

an argument and returns a new function object.

• The decorator may add some functionality to the original function, modify it, or

even completely replace it with another function.

3. New Function Object (Decorated Function):

• The object returned by the decorator is now the decorated function. This new

function object is what is accessible using the original function’s name after

decoration.

• The new function object can retain a reference to the original function object,

allowing it to invoke the original function's behavior within the new behavior.

4. Two Distinct Objects:

• The original function object and the new (decorated) function object are separate

objects in memory. *

• If you retain a separate reference to the original function (before it is decorated),

you can still access its undecorated behavior.

Here is one way to keep the original function (other than defining it twice):

def my_decorator(func):

 def wrapper(*args, **kwargs):

 print("Decorator adds this before the function call")

 result = func(*args, **kwargs)

 print("Decorator adds this after the function call")

 return result

 # Provide access to the undecorated function via an attribute of the wrapper

 wrapper.original = func
 return wrapper

Applying the decorator using the @ notation

@my_decorator

def original_function(x, y):

 print(f"Original function called with arguments: {x}, {y}")

 return x + y

11

Using the decorated function

print("Calling decorated function:")

original_function(5, 10)

Using the undecorated function via an attribute of the decorated function

print("\nCalling undecorated function:")

original_function.original(5, 10)

12

Problem:

Write a decorator that when applied to a function will keep track of how many times that

function has been called. It will do this by keeping count of the calls to the decorated functions in

a dictionary passed to the decorator.

calldict={} # calldict is the dictionary

@countcalls(calldict) #countcalls is the decorator

def add(x,y):

 return x+y

@countcalls(calldict)

def mult(x,y):

 return x*y

z=add(2,3)

print(calldict)

z=add(2,3)

print(calldict)

z=mult(2,3)

print(calldict)

When I run the above code, I get:

{'add': 1}

{'add': 2}

{'add': 2, 'mult': 1}

>>>

Write the countcalls decorator.

Solution:

13

def countcalls(calldict):

 def decorator(func):

 def wrapper(*args, **kwargs):

 # Increment the count for this function in calldict

 calldict[func.__name__] = calldict.get(func.__name__, 0) + 1

 # Call the original function

 return func(*args, **kwargs)

 return wrapper

 return decorator

When we run the program:

calldict = {}

@countcalls(calldict)

def add(x, y):

 return x + y

@countcalls(calldict)

def mult(x, y):

 return x * y

Testing the functions and printing calldict

z = add(2, 3)

print(calldict) # Output: {'add': 1}

z = add(2, 3)

print(calldict) # Output: {'add': 2}

z = mult(2, 3)

print(calldict) # Output: {'add': 2, 'mult': 1}

Another example. A decorator to return the runtime of the decorated functions.

Some background.

Python has extensive libraries for dealing with dates and times.

The time library in Python provides various time-related functions. It allows you to measure

time intervals in seconds, determine the current time, and perform conversions between different

time formats. There is also timeit.

14

Excursus

`time.time()` and `timeit.timeit()` are both used for measuring time in Python, but they serve

different purposes and operate in slightly different ways:

1. `time.time()`:

 Purpose: `time.time()` is a function in the `time` module. It returns the current time in seconds

since the Epoch (Jan 1, 1970, at 00:00:00 UTC), commonly known as Unix time.

 Usage: It's typically used for getting the current timestamp or measuring the duration of an

event by calculating the difference in time before and after the event. For example, to measure

how long a piece of code takes to execute, you would record the time before and after its

execution and calculate the difference.

 Precision: The precision of `time.time()` can vary based on the system and platform. It's

generally suitable for most practical purposes but might not be the best choice for

microbenchmarking or where very high precision is needed.

2. `timeit.timeit()`:

 Purpose: `timeit.timeit()` is a function in the `timeit` module. It's specifically designed for

measuring the execution time of small code snippets. It provides a more accurate and reliable

way of timing code than `time.time()`, particularly for short code snippets where the execution

time is very brief.

 Usage: `timeit.timeit()` runs the code snippet multiple times (default is 1,000,000 times) in a

controlled environment and returns the total time taken for all executions. This repeated

execution helps to average out any fluctuations in time due to systemrelated anomalies.

 Setup: `timeit.timeit()` also allows you to specify setup code that runs once before the timing

runs start. This is useful for setting up the environment without including this setup time in the

final timing.

 Precision: `timeit.timeit()` is more precise for timing short code snippets, as it minimizes the

impact of external factors on the timing and averages out the time over multiple runs.

15

Examples

 Using `time.time()`:

import time

 start = time.time()

 # Your code to time

 end = time.time()

 print(f"Duration: {end start} seconds")

 Using `timeit.timeit()`:

 import timeit

 duration = timeit.timeit('code_to_time()', setup='from __main__ import code_to_time',

number=1000)

 print(f"Total duration for 1000 runs: {duration} seconds")

So, ingeneral, use `time.time()` for general-purpose timing and longer running processes, and

`timeit.timeit()` for more accurate timing of short code snippets, especially when conducting

performance tests or benchmarks.

Example:

import time

def my_function():

 time.sleep(2) # simulate a 2 second delay

 return "Hello, world!"

start_time = time.time()

result = my_function()

end_time = time.time()

duration = end_time - start_time

print(f"Result: {result}")

print(f"Duration: {duration} seconds")

When I run this code I get:

Result: Hello, world!

Duration: 2.0110862255096436 seconds

16

import timeit

def my_function():

 time.sleep(2) # simulate a 2 second delay

 return "Hello, world!"

duration = timeit.timeit(my_function, number=1)

print(f"Duration: {duration} seconds")

The timeit module is specifically designed to measure the execution time of small code snippets

with high accuracy. It provides a timeit() function that takes a Python statement as input and

executes it a number of times to measure the average execution time.

For example:

import timeit

def my_function():

 for i in range(1000000):

 pass

timeit can be used as a standalone function

time_taken = timeit.timeit(my_function, number=100)

print("Execution time:", f"{time_taken:.4f} seconds")

The result is

Execution time: 1.8632 seconds

Another example:

import timeit

def my_function():

 sum = 0

 for i in range(1000000):

 sum += i

 return sum

Time the execution of my_function 1000 times

t = timeit.timeit(my_function, number=1000)

print(f"Execution time: {t:.6f} seconds")

17

Problem:

Let’s compare the runtime of four sorting algorithms: bubble sort, insertion sort, quicksort and

merge sort.

Write a decorator “timer” so that when it decorates a sort function, it sorts the list passed to the

function and returns the runtime.

Answer:

import time

import functools

import matplotlib.pyplot as plt

import random

Timer decorator to measure execution time

def timer(func):

 @functools.wraps(func)

 def wrapper_timer(*args, **kwargs):

 start_time = time.time()

 value = func(*args, **kwargs)

 end_time = time.time()

 runtime = end_time - start_time

 #print(f"Runtime of {func.__name__}: {runtime:.6f} seconds")

 return runtime, value # Return both runtime and the sorted array

 return wrapper_timer

Bubble Sort

@timer

def bubble_sort(arr):

 n = len(arr)

 for i in range(n):

 for j in range(0, n-i-1):

 if arr[j] > arr[j+1]:

 arr[j], arr[j+1] = arr[j+1], arr[j]

 return arr

Selection Sort

@timer

def selection_sort(arr):

 for i in range(len(arr)):

 min_idx = i

 for j in range(i+1, len(arr)):

 if arr[min_idx] > arr[j]:

 min_idx = j

 arr[i], arr[min_idx] = arr[min_idx], arr[i]

return arr

18

Merge Sort

@timer

def merge_sort(arr):

 if len(arr) > 1:

 mid = len(arr)//2

 L = arr[:mid]

 R = arr[mid:]

 merge_sort(L)

 merge_sort(R)

 i = j = k = 0

 while i < len(L) and j < len(R):

 if L[i] < R[j]:

 arr[k] = L[i]

 i += 1

 else:

 arr[k] = R[j]

 j += 1

 k += 1

 while i < len(L):

 arr[k] = L[i]

 i += 1

 k += 1

 while j < len(R):

 arr[k] = R[j]

 j += 1

 k += 1

 return arr

Quick Sort

@timer

def quick_sort(arr):

 if len(arr) <= 1:

 return arr

 else:

 pivot = arr[0]

 less = [x for x in arr[1:] if x <= pivot]

 greater = [x for x in arr[1:] if x > pivot]

 # Apply quick_sort and unpack the results to ignore the timing

 _, sorted_less = quick_sort(less)

 _, sorted_greater = quick_sort(greater)

 return sorted_less + [pivot] + sorted_greater

19

Generate test data

data_size = 10000 # Increase the data size to get more accurate results

test_data = [random.randint(1, 10000) for _ in range(data_size)]

Dictionary to hold the results

times = {}

Run each sorting algorithm and store the results

times['Bubble Sort'], _ = bubble_sort(test_data.copy())

times['Selection Sort'], _ = selection_sort(test_data.copy())

times['Merge Sort'], _ = merge_sort(test_data.copy())

times['Quick Sort'], _ = quick_sort(test_data.copy())

print("Runtimes")

print('Bubble Sort:',times['Bubble Sort'])

print('Selection Sort:',times['Selection Sort'])

print('Merge Sort:',times['Merge Sort'])

print('Quick Sort:',times['Quick Sort'])

Plotting the results

plt.bar(times.keys(), times.values(), color=['red', 'green', 'blue', 'cyan'])

plt.ylabel('Time (seconds)')

plt.xlabel('Sorting Algorithm')

plt.title('Sorting Algorithm Performance')

plt.show()

Plotting the results with a logarithmic scale

plt.bar(times.keys(), times.values(), color=['red', 'green', 'blue', 'cyan'])

plt.yscale('log') # Set the y-axis to a logarithmic scale

plt.ylabel('Time (seconds)')

plt.xlabel('Sorting Algorithm')

plt.title('Sorting Algorithm Performance')

plt.show()

Finally, let’s make sure that we understand the flow of control when decorators are used.

The following example is from:

https://www.geeksforgeeks.org/decorators-in-python/#

https://www.geeksforgeeks.org/decorators-in-python/

20

defining a decorator
def hello_decorator(func):

 # inner1 is a Wrapper function in
 # which the argument is called

 # inner function can access the outer local
 # functions like in this case "func"
 def inner1():
 print("Hello, this is before function execution")

 # calling the actual function now
 # inside the wrapper function.
 func()

 print("This is after function execution")

 return inner1

defining a function, to be called inside wrapper
def function_to_be_used():
 print("This is inside the function !!")

passing 'function_to_be_used' inside the
decorator to control its behaviour
function_to_be_used = hello_decorator(function_to_be_used)

calling the function
function_to_be_used()

21

