Decorators
Recall that:

A function can define a new function inside itself as well as return the function.

def f(x):
def sq(z2):
return z*z
return sq(x)

>>>

>>> £ (3)
9

>>> |

A function is a first-class object and so can be assigned to a variable.

def f(x):
def sq(2):
return z*z
return sq(x)

g=f
print(g(3))

We get

>>> g (3)
9

The name of a function is a pointer to the function object.
So, if we write sum=0, this breaks the connection to the built-in sum function.
These ideas allow us to define “decorator” functions in Python.

Note: for a nice introduction see https://www.geeksforgeeks.org/decorators-in-
python/ or https://www.programiz.com/python-programming/decorator

1

https://www.geeksforgeeks.org/decorators-in-python/
https://www.geeksforgeeks.org/decorators-in-python/
https://www.programiz.com/python-programming/decorator

A decorator is a function that creates a “wrapper” around another function.

In Python, a decorator is a function that takes another function and extends or modifies its
behavior without explicitly modifying its code.

The primary purpose of this wrapping is to alter or enhance the behavior when you call the
original function without changing the code of the original function in any way.

For example, you might want to print a message whenever a given function is entered and again
when it is exited. You could accomplish this by changing the functions by adding the appropriate
print functions. But ... say you don’t have access allowing you to modify the function so this
method wont work.

Or say you are debugging a system and you would like to have many different functions report
on their entry and exit. It would be time consuming to modify all of them. Among other uses,
decorators provide an answer to this problem.

Example: (run this)
def my_decorator(func):
def wrapper():
print("Something is happening before the function is called."”)
func()
print("Something is happening after the function is called.")
return wrapper

def say_whee():
print("Whee!")

say_whee = my_decorator(say_whee)
say_whee()

Let’s generalize
The function
def add_numbers(x, y):

return X +y

adds two numbers and returns the sum.

Say that you would like to print a message when add_numbers is entered and when it exits. You
can do it with decorators like this:

1. Define a function (for this example call the function “log_function_call”’) that takes the
original function (call original function func) as an argument and makes a “sandwich”
around f that

a. Prints that func has entered
b. Calls func to do the work
c. Prints that func has exited.

We call the sandwich a “wrapper”.

The “log_function_call” function returns the wrapper functions. This is easier to
understand by just looking at the code.

This is the decorator function
def log_function_call(func):
def wrapper(*args, **kwargs):
print(f"Calling function {func.__name__}")
result = func(*args, **kwargs)
print(f"Finished calling function {func.__name__}")
return result
return wrapper

This is the function to be decorated
def add_numbers(x, y):
return X +y

This says that the log_function_call function will “decorate” the add function
@log_function_call
def add_numbers(x, y):

return X +y

Now you call add_number(2,3)

result = add_numbers(2, 3)
print(result)

This is equivalent to (as we saw in the first example)

add_numbers= log_function_call(add_numbers(2,3))
3

result = add_numbers(2, 3)
print(result)

In general:
Syntactically, decorators are denoted using the special @ symbol as follows:

@decorate
def func(x):

The preceding code is shorthand for the following:
def func(x):

func = decorate (func) # decorate isthe name of the decorator in this example

So the original function name is associated with the decorated function.
In the example, a function func() is defined.

e However, immediately after its definition, the function object itself is passed to the
function decorate(),

e which returns an object that replaces the original func. (i.e. the new object is assigned
to the original name func)

We can run this in the emulator to see exactly the control path during program execution.

There is a problem, however. In practice, functions also contain metadata such as the
function name, doc string, and type hints. If you put a wrapper around a function, this
information gets hidden. When writing a decorator, it’s considered best practice to use
the @wraps () decorator, for example:

def my decorator (func):

def wrapper (*args, **kwargs):
""" wrapper
print ("Before the function is called.")
result = func(*args, **kwargs)
print ("After the function is called.")
return result

return wrapper

@my decorator

def my function(x,y):
mew my funcﬂ mwn
return x+y

z=my function (2, 3)

print (z,my function. name)

print (z,my function. doc)

When | run this, | expect the function name to be “my_function” and the doc string to be """ my
func™™. But here is what | get:

Before the function is called.
After the function is called.
5 wrapper Wrong function name
5 wrapper Wrong doc string
>>>

The solution

from functools import wraps

The @wraps () decorator copies various function metadata to the replacement function. In this
case, metadata from the given function func() is copied to the returned wrapper function call().

So now we have:

import functools

def my decorator (func):

@functools.wraps (func)

def wrapper (*args, **kwargs) :
""" wrapper
print ("Before the function is called.")
result = func(*args, **kwargs)
print ("After the function is called.")
return result

return wrapper

mwmwn

@my decorator

def my function(x,y):
mmow my func
return x+y

mwww

z=my function (2, 3)
print (z,my function. name) # Output: "my function"
print (z,my function. doc)

When decorators are applied, they must appear on their own line immediately prior to the
function.

Now that we have the decorator we can apply it to any function we like. Say you have a function

def mult(x,y):
return x*y

| can decorate it like this:

import functools

def my_decorator(func):

@functools.wraps(func)

def wrapper(*args, **kwargs):
""" wrapper
print("Before the function is called.")
result = func(*args, **kwargs)
print("After the function is called.")
return result

return wrapper

@my_decorator

def mult(x,y):
""" mult func
return x*y

z=mult(2,3)
print(z,mult.__name__) # Output: "my_function"
print(z,mult.__doc_)

and | get

Before the function is called.
After the function is called.
6 mult

6 mult func

Understanding the process

Functions in Python are decorated at the time they are defined, not when they are called. The
decoration process is part of the function definition and occurs immediately after the function
object is created, but before the function is actually called for the first time.

Here's how it works:

1. Function Definition: When Python encounters a function definition, it creates a function
object. This includes parsing the function's code and setting up its name, parameters, and
the code to execute.

2. Applying the Decorator: If the function definition is preceded by one or more decorator
expressions, each decorator is applied as soon as the function object is created. A
decorator is essentially a callable that takes a function object as an argument and returns a
new function object. The original function object is replaced by the one returned by the
decorator.

3. Final Function Object: The final function object, which might have been modified or
completely replaced by the decorators, is then bound to the function's name in the current
namespace.

4. Function Calls: When the decorated function is later called, it's the modified version of
the function (as returned by the decorator) that is executed, not the original version.

So, for example

def my_decorator(func):
def wrapper():
print("Something is happening before the function is called.")
func()
print("Something is happening after the function is called.")
return wrapper

@my_decorator
def say_hello():
print("Hello!)
At this point, say_hello is already decorated
say_hello()

in this example

e Thesay_hello function is defined.
o Immediately after its definition, my_decorator is applied to say_hello.

7

e The my_decorator function takes say_hello as an argument, wraps additional
functionality around it, and returns the wrapper function.

e The name say_hello now refers to the wrapper function, not the original say_hello
function.

« Whensay_hello() is called, it's actually the wrapper function that gets executed.

This illustrates that the decoration process is part of the function's creation and definition
phase, not the call phase.

Can we have multiple decorators applied to the same function?

Yes.

When you apply multiple decorators to a function, they are applied from the innermost (closest
to the function definition) to the outermost (farthest from the function definition). This means the
decorator closest to the function is applied first, and then the next closest, and so on, up to the
outermost decorator.

Consider:

def decoratorl(func):
def wrapper(*args, **kwargs):
print("Decorator 1")
return func(*args, **kwargs)
return wrapper

def decorator2(func):
def wrapper(*args, **kwargs):
print("Decorator 2")
return func(*args, **kwargs)
return wrapper

def decorator3(func):
def wrapper(*args, **kwargs):
print("Decorator 3")
return func(*args, **kwargs)
return wrapper

@decorator3

@decorator2

@decoratorl

def my_function():
print("Hello, World!")

my_function()

In this example, "'my_function™ is decorated with “decoratorl’, “decorator2’, and "decorator3".
Here’s how the decorators are applied:

1. Innermost Decorator: “decoratorl” is applied first because it is the closest to the function.
2. Middle Decorator: "decorator2” is applied next, wrapping the result of "decoratorl’.
3. Outermost Decorator: “decorator3 is applied last, wrapping the result of "decorator2".

When "my_function()" is called, the execution flow is as follows:

1. “decorator3™'s “wrapper" function is executed first.

2. Inside “decorator3™'s “wrapper’, "‘decorator2™'s "wrapper is executed.
3. Inside “decorator2™'s “wrapper-, "decoratorl™s "wrapper" is executed.
4. Finally, "decoratorl™s "wrapper™ calls the original ‘'my_function'.

So, the output will be:

Decorator 3
Decorator 2
Decorator 1
Hello, World!

This shows that decorators are applied from the innermost to the outermost, but they are
executed from the outermost to the innermost when the decorated function is called.

Note also that the decorated function is its own object, distinct from the original function
object. When a function is decorated, the decorator takes the original function object as an input
and typically returns a new function object. This new function object usually wraps or modifies
the behavior of the original function. As a result, the original and decorated functions are two
different function objects.

In general

1. Original Function Object:

e When you define a function, Python creates a function object for it. This object

represents the function with its original behavior.
2. Applying the Decorator:

o A decorator is a callable (usually another function) that takes a function object as
an argument and returns a new function object.

e The decorator may add some functionality to the original function, modify it, or
even completely replace it with another function.

3. New Function Object (Decorated Function):

e The object returned by the decorator is now the decorated function. This new
function object is what is accessible using the original function’s name after
decoration.

e The new function object can retain a reference to the original function object,
allowing it to invoke the original function's behavior within the new behavior.

4. Two Distinct Objects:

« The original function object and the new (decorated) function object are separate
objects in memory. *

« If you retain a separate reference to the original function (before it is decorated),
you can still access its undecorated behavior.

Here is one way to keep the original function (other than defining it twice):

def my_decorator(func):
def wrapper(*args, **kwargs):
print("Decorator adds this before the function call™)
result = func(*args, **kwargs)
print("Decorator adds this after the function call™)
return result

Provide access to the undecorated function via an attribute of the wrapper

wrapper.original = func
return wrapper

Applying the decorator using the @ notation
@my_decorator
def original_function(X, y):
print(f'Original function called with arguments: {x}, {y}")
return X +y
10

Using the decorated function
print("Calling decorated function:")
original_function(5, 10)

Using the undecorated function via an attribute of the decorated function

print("\nCalling undecorated function:")
original_function.original(5, 10)

11

Problem:

Write a decorator that when applied to a function will keep track of how many times that
function has been called. It will do this by keeping count of the calls to the decorated functions in
a dictionary passed to the decorator.

calldict={} # calldict is the dictionary

@countcalls(calldict) #countcalls is the decorator
def add(x,y):
return x+y

@countcalls(calldict)
def mult(x,y):
return x*y

z=add(2,3)
print(calldict)
z=add(2,3)
print(calldict)
z=mult(2,3)
print(calldict)

When I run the above code, | get:
{'add": 1}

{'add": 2}

{'add" 2, 'mult" 1}

>>>

Write the countcalls decorator.

Solution:

12

def countcalls(calldict):
def decorator(func):
def wrapper(*args, **kwargs):
Increment the count for this function in calldict
calldict[func.__name__] = calldict.get(func.__name__,0) +1
Call the original function
return func(*args, **kwargs)
return wrapper
return decorator

When we run the program:
calldict = {}

@countcalls(calldict)
def add(x, y):
return x +y

@countcalls(calldict)
def mult(x, y):
return x *y

Testing the functions and printing calldict
z = add(2, 3)

print(calldict) # Output: {'add": 1}

z = add(2, 3)

print(calldict) # Output: {'add": 2}

z =mult(2, 3)

print(calldict) # Output: {'add": 2, 'mult": 1}

Another example. A decorator to return the runtime of the decorated functions.

Some background.

Python has extensive libraries for dealing with dates and times.

The time library in Python provides various time-related functions. It allows you to measure
time intervals in seconds, determine the current time, and perform conversions between different

time formats. There is also timeit.

13

Excursus

“time.time()" and “timeit.timeit()" are both used for measuring time in Python, but they serve
different purposes and operate in slightly different ways:

1. “time.time():

Purpose: "time.time()" is a function in the “time™ module. It returns the current time in seconds
since the Epoch (Jan 1, 1970, at 00:00:00 UTC), commonly known as Unix time.

Usage: It's typically used for getting the current timestamp or measuring the duration of an
event by calculating the difference in time before and after the event. For example, to measure
how long a piece of code takes to execute, you would record the time before and after its
execution and calculate the difference.

Precision: The precision of "time.time()" can vary based on the system and platform. It's
generally suitable for most practical purposes but might not be the best choice for
microbenchmarking or where very high precision is needed.

2. “timeit.timeit():

Purpose: "timeit.timeit()" is a function in the “timeit™ module. It's specifically designed for
measuring the execution time of small code snippets. It provides a more accurate and reliable
way of timing code than “time.time()", particularly for short code snippets where the execution
time is very brief.

Usage: "timeit.timeit()" runs the code snippet multiple times (default is 1,000,000 times) in a
controlled environment and returns the total time taken for all executions. This repeated
execution helps to average out any fluctuations in time due to systemrelated anomalies.

Setup: ‘timeit.timeit()" also allows you to specify setup code that runs once before the timing
runs start. This is useful for setting up the environment without including this setup time in the
final timing.

Precision: "timeit.timeit()" is more precise for timing short code snippets, as it minimizes the
impact of external factors on the timing and averages out the time over multiple runs.

14

Examples

Using “time.time():

import time

start = time.time()

Your code to time

end = time.time()

print(f"Duration: {end start} seconds™)

Using “timeit.timeit():

import timeit

duration = timeit.timeit(‘code_to_time()’, setup="from __main__ import code_to_time',
number=1000)
print(f"Total duration for 1000 runs: {duration} seconds")

So, ingeneral, use “time.time()" for general-purpose timing and longer running processes, and
“timeit.timeit()" for more accurate timing of short code snippets, especially when conducting
performance tests or benchmarks.

Example:
import time
def my_function():
time.sleep(2) # simulate a 2 second delay
return "Hello, world!"
start_time = time.time()
result = my_function()
end_time = time.time()
duration = end_time - start_time
print(f"Result: {result}")
print(f"Duration: {duration} seconds")

When I run this code | get:

Result: Hello, world!
Duration: 2.0110862255096436 seconds

15

import timeit
def my_function():
time.sleep(2) # simulate a 2 second delay
return "Hello, world!"
duration = timeit.timeit(my_function, number=1)
print(f'Duration: {duration} seconds")
The timeit module is specifically designed to measure the execution time of small code snippets
with high accuracy. It provides a timeit() function that takes a Python statement as input and
executes it a number of times to measure the average execution time.
For example:
import timeit
def my_function():
for i in range(1000000):

pass

timeit can be used as a standalone function
time_taken = timeit.timeit(my_function, number=100)

print("Execution time:", f*{time_taken:.4f} seconds")

The result is
Execution time: 1.8632 seconds

Another example:
import timeit

def my_function():
sum =0
for i in range(1000000):
sum +=1i
return sum

Time the execution of my_function 1000 times
t = timeit.timeit(my_function, number=1000)

print(f"Execution time: {t:.6f} seconds")
16

Problem:

Let’s compare the runtime of four sorting algorithms: bubble sort, insertion sort, quicksort and
merge sort.

Write a decorator “timer” so that when it decorates a sort function, it sorts the list passed to the
function and returns the runtime.

Answer:

import time

import functools

import matplotlib.pyplot as plt
import random

Timer decorator to measure execution time
def timer(func):
@functools.wraps(func)
def wrapper_timer(*args, **kwargs):
start_time = time.time()
value = func(*args, **kwargs)
end_time = time.time()
runtime = end_time - start_time
#print(f"Runtime of {func.__name__}: {runtime:.6f} seconds")
return runtime, value # Return both runtime and the sorted array
return wrapper_timer

Bubble Sort
@timer
def bubble_sort(arr):

n = len(arr)

for i in range(n):

for j in range(0, n-i-1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arrj]
return arr

Selection Sort
@timer
def selection_sort(arr):
for i in range(len(arr)):
min_idx =i
for j in range(i+1, len(arr)):
if arr[min_idx] > arr[j]:
min_idx = j

arr[i], arr[min_idx] = arr[min_idx], arr[i]

return arr

17

Merge Sort
@timer
def merge_sort(arr):
if lenarr) > 1:
mid = len(arr)//2
L = arr[:mid]
R =arr[mid:]

merge_sort(L)
merge_sort(R)

i=j=k=0
while i < len(L) and j < len(R):
if L[i] <R[j]:
arr[k] = L[i]
i+=1
else:
arr[k] = R[j]
j+=1
k+=1
while i <len(L):
arr[K] = L[i]
i+=1
k+=1
while j < len(R):
arr[k] = R[j]
j+=1
k+=1
return arr
Quick Sort
@timer

def quick_sort(arr):
if len(arr) <= 1:
return arr
else:
pivot = arr[0]
less = [x for x in arr[1:] if x <= pivot]
greater = [x for x in arr[1:] if X > pivot]

Apply quick_sort and unpack the results to ignore the timing
_, sorted_less = quick_sort(less)
_, sorted_greater = quick_sort(greater)

return sorted_less + [pivot] + sorted_greater

18

Generate test data
data_size = 10000 # Increase the data size to get more accurate results
test_data = [random.randint(1, 10000) for _ in range(data_size)]

Dictionary to hold the results
times = {}

Run each sorting algorithm and store the results
times['Bubble Sort], _ = bubble_sort(test_data.copy())
times['Selection Sort], _ = selection_sort(test_data.copy())
times['Merge Sort], _ = merge_sort(test_data.copy())
times['Quick Sort'], _ = quick_sort(test_data.copy())

print("Runtimes")

print('Bubble Sort:',times['Bubble Sort1)
print('Selection Sort:',times['Selection Sort1)
print('Merge Sort:',times['Merge Sort)
print('Quick Sort:',times['Quick Sort)

Plotting the results

plt.bar(times.keys(), times.values(), color=["red’, 'green’, 'blue’, ‘cyan’)
plt.ylabel("Time (seconds)’)

plt.xlabel('Sorting Algorithm")

plt.title("Sorting Algorithm Performance’)

plt.show()

Plotting the results with a logarithmic scale

plt.bar(times.keys(), times.values(), color=["red’, ‘'green’, 'blue’, ‘cyan)
plt.yscale('log") # Set the y-axis to a logarithmic scale
plt.ylabel('Time (seconds)')

plt.xlabel('Sorting Algorithm")

plt.title("Sorting Algorithm Performance’)

plt.show()

Finally, let’s make sure that we understand the flow of control when decorators are used.

The following example is from:

https://www.geeksforgeeks.org/decorators-in-python/#

19

https://www.geeksforgeeks.org/decorators-in-python/

defining a decorator
def hello_decorator(func):

innerl is a Wrapper function in
which the argument is called

inner function can access the outer local
functions like in this case "func"
def innerl():
print("Hello, this is before function execution")

calling the actual function now
inside the wrapper function.
func()
print("This is after function execution")
return innerl
defining a function, to be called inside wrapper

def function_to_be used():
print("This is inside the function !!")

passing 'function_to_be used' inside the
decorator to control its behaviour
function_to_be_used = hello_decorator(function_to_be used)

calling the function
function_to_be_used()

20

step 2 ef hello_decorator(func):

def innerl():

print("Hello, this is before function execution")

func()
print(“This is after function execution™)
r-eturn innerl

def function_to_be used():
print("This is inside the function!!™)

step 1 ,unction_to_be_used = hello_decorator(function_to_be used)

step 5 unction_to_be_used()

def hello decorator(func):

step 6
def innerl():
print("Hello, this is before function execution")

step 7

print("This is after function execution™)
return innerl

step 9

det function_to_be used():
print("This is inside the function!!")

function_to_be used = hello_decorator(function_to_be_ used)

step 12 unction_to_be_ used()

