Programming with Python
labs. Please make use of these resources.

Topical Syllabus

Why a “topical” syllabus?

Each group of students is unique and so, in different classes, we need to spend more or less time on
specific topics. We will cover the topics below, more or less in the order indicated. | will be letting you
know in class what to prepare for the next few classes.

Introduction to computers and computing

The Python environment

Values and data types

Input and output

Hello World!

Variables, and assignment

Control Structures (if, if/else, while, for)

Functions and modules

Sequences, lists, strings, sets, tuples, dictionaries and comprehensions
Working with text

e Files
e (Generators

e decorators
e Classes — Object Oriented Programming (if time permits)
e additional material in-between and after the above, as time permits

Requirements
Exams

A midterm and final exam

Texts
Listed on the class website.

https://venus.cs.gc.cuny.edu/~waxman/cs90/

How to use these notes?

These notes are not a substitute for a text book. The notes will provide an outline of important ideas, and
a place to work out the problems that we tackle in class. Theyontain most (but not necessarily all) of the
material that we cover in the lecture.

There will be lots of space for you to write answers to question that come up in class. Use these notes
as your notebook to take class notes.

Important: You are responsible for material that we cover in class but are not in the notes. If you miss
any classes, please make sure that you are current.

https://venus.cs.qc.cuny.edu/~waxman/cs90/

Most in-demand programming languages of 2022
Based on LinkedIn job postings in the USA & Europe

python I
e |
Java
JavaScript __
[— |
C+ e
_———
C¢
c I
=]
TypeScrIpt [
perl NNE—
=
Ruby
0 50,000 100,000 150,000 200,000 250,000
B US Job Posts I European Economic Area Job Posts By: CodingNomads

That was 2022. What about 20247

https://www.orientsoftware.com/blog/most-popular-programming-languages/

T DUNNO... /
DYNAMIC TYPING? I JUST TYPED
g’\,_ WHITEGPRCE? import ontigmuty
/ coreTonus! | [THATS IT? [
PROGRAIMMING ... T ALSO SAMPLED
Ewﬁ %,%m (1S FUN AGAIN! EVERYHING IN THE
1S 0 SIMPLE! ITS A WHOLE VIEDICINE CABINET
| NEW WORLD FOR COMPARISON.
HELLO WORLD 1S JuST _ UP HERE! [
print "Hello, world!" BUT HOW ARE BUT T THINK THIS
YOU FLYING? 16 THE PYTHON.

https://www.orientsoftware.com/blog/most-popular-programming-languages/

Python

There are many Python Implementations:
1. CPython:

Description: The default and most widely used implementation of Python, written in C.
Key Features:

e Most compatible with Python libraries and extensions.

o Standard interpreter distributed by the Python Software Foundation.
When to Use:

o General-purpose use.

e When you need the broadest compatibility with Python libraries and tools.

2. PyPy:
« Description: An alternative implementation of Python, written in Python (RPython).
o Key Features:
e Just-In-Time (JIT) compiler, which can significantly speed up execution of Python
code.
e Generally faster than CPython for long-running applications.
e When to Use:
e When you need better performance for your Python code, especially for long-
running programs.
e If you need to run code that is compatible with the standard Python (CPython) but
want better performance.
3. Cython:

Description: A programming language that makes writing C extensions for Python as easy
as Python itself.

Key Features:

« Allows you to write C-like performance code while retaining the syntax and ease of
Python.

o Useful for performance-critical sections of code.
When to Use:
e When you need to optimize performance-critical parts of your application.

e For integrating C libraries with Python.
3

4. Jython:
o Description: An implementation of Python that runs on the Java platform.
o Key Features:
e Can seamlessly import and use any Java class.
« Allows you to write Python code that interacts with Java.
e When to Use:
« When you need to integrate with Java applications or libraries.
o For leveraging Java's extensive ecosystem while using Python.
5. lronPython:
o Description: An implementation of Python running on the .NET framework.
o Key Features:
e Canuse .NET libraries and tools.
« ldeal for applications that require .NET integration.
e When to Use:

« When working in a .NET environment and you need to integrate Python with .NET
libraries and tools.

6. MicroPython:

o Description: A lean and efficient implementation of Python 3 designed to run on
microcontrollers.

o Key Features:
o Designed for microcontrollers with limited resources.
e Optimized for running on small embedded systems.
e When to Use:
e For developing applications on microcontrollers and embedded systems.
e When working with 10T devices that require Python.
Summary:
e CPython: General use, compatibility with all Python libraries.
« PyPy: Performance boost for long-running applications.
« Cython: Performance-critical code sections, integration with C.
o Jython: Java integration.
e IronPython: .NET integration.

e MicroPython: Embedded systems and microcontrollers.

Choosing the right implementation depends on your specific needs, such as performance requirements,
compatibility with other languages, or constraints of the target platform.

We will be using CPython, the default and most widely used implementation of Python,

Download Python and install it on your laptop.

Python can be downloaded for free from the official Python web site:

http://python.orq/

We will be using Python 3.9 (or whatever the current latest version is) 3.11. Make sure you download
andinstall the correct version (Windows/Mac) and the 32 or 64 bit version.

IDLE — Integrated Development Environment

When Python installs you will be able to access its functionality through the IDLE interface.
(% Python shell -;~ E=REa)

File Edit Shell Debug Options Windows Help — —

Python 3.2.2 (default, Sep 4 2011, 09:07:29) [MSC v.1500 64 bit (AMD6&4)] on win ~|
32

Type "copyright™, "credits™ or "license ()" for more information.

| >>> |

£

http://python.org/

We will be accessing Python in three different ways.

1. The interactive shell. This is available when we bring up IDLE. We will make limited use of this,
mostly to experiment with various Python constructs and to test out ideas.

2. Python programs. This will be our main focus. A program (sometimes called a “script”) is a file
containing a sequence of statements in the Python language. We will create these files using IDLE and
then “run” the file which will execute the statements in the program.

3. A Python Emulator. This website will allow us to “step through a python program and “see” what is
happening in the memory after each instruction is executed. We will use this in class and it is an
excellent tool when you are debugging (eliminating errors) your programs. It is available here:
http://pythontutor.com/

And now

http://pythontutor.com/

We first examine some Python constructs by using the interactive shell.
Data Types — A Classification of Python’s Nouns

More precisely, a data type is thought of as the combination of the nouns and the verbs that they
respond to.

Type Category Type Name Description

None type (None) The null object None
Numbers int Integer
long Arbitrary-precision integer (Python 2 only)
float Floating point
complex Complex number
bool Boolean (True or False)
Sequences str Character string
unicode Unicode character string (Python 2 only)
list List
tuple Tuple
xXrange A range of integers created by xrange () (In Python 3,
it is called range.)
Mapping dict Dictionary
Sets set Mutable set
frozenset Immutable set

We will start with some of the basic data types:

Integers
Floats
Strings
Booleans

There will be more later on.

The data types denote sets of the different types of Pythons nouns. The individual elements of the set
the constants. are the nouns. For example, One of Python’s data types is “integer”, i.e. all of the
whole numbers. Each particular number is like a noun. It’s like in a natural language there is the class
of “nouns” (the data type) and individual nouns in that class.

Since one of the main things that we might want to do with Python is mathematical computations,
Python provides two kinds of arithmetic “nouns”, i.e. numbers, the integers and floats, and operations
on them.

When we perform operations on the data we are generation something called an “expression.” Simply
put an expression is something that Python can evaluate, that is we can perform the operations and get
a value. We will see examples as we look at the specific data types.

Important: In Python, everything is an (first class) object.

What does that mean in practice?

The first data type:

Integer: a whole number, positive, negative or 0. Integers in Python can be arbitrarily long and are
written without commas. Other programming languages generally limit the size of integers.
0

56
-897
345678987654323456787665543093764830036455489302002

Note: we can use _’ as a separator to help visualize a long number. This will not effect its
representation.

Ex: 123_456_789

Operations on integers:

Python provides the standard mathematical operations on integers, with a twist or two.

1. Addition = 123 +56
Notice that adding two integers always produces another integer.

2. Subtraction=>» 123 - 56
Notice that subtracting two integers always produces another integer.

3. Multiplication = 123*56

Notice that multiplying two integers always produces another integer.
4. Division There are two division operations available for integers: “/” and “//”.

The ““/*” operator.

“/” will perform “regular” division so 123/56 = 2.19, i.e. produces a “floating point” number, (a
number with a decimal point) which we will see next.

Even when the numbers divide exactly, the result of “/” will always be a float and contain a
decimal point.

201> 2.0

The “//” operator.

123//56 =» 2 Notice that the decimal point and all digits to its right are gone! They have been
“truncated.” It’s as if Python took the 2.19 above and “chopped off” the decimal point and everything
to its right.

This ““//”” operation on integers will always produce an integer result.

7 Pyvon svet -

File Edit Shell Debug Options Windows Help

Python 3.2.2 (default, Sep 4 2C
| 32

Type "copyright™, "credits"™ or "
I}}} 123+56

l1?9

i| >>> 123-56

67

=»>> 123*56

6888

=>> 123/56

2.1%964285714285716

>

>>> 123//56

2

>>> |

5. “%?” the remainder function, called mod. If a and b are integers then a%b returns (evaluates to)
the remainder of a divided by b.
For example:

74 Python 3.3.2 Shell

File Edit Shell Debug Options Windows Help

Python 3.3.2 (v3.3.2:d0479%28ae3f6, May 16 2013, 00:03:43) [M5C .
tel)] on win3Z

Type "copyvright™, "credits"™ or "license ()" for more information.
x> 5E%Z

1

x> 10%2

[}

>3 |

6. Exponentiation: **
For example: 5**3=125

Operator Precedence (from the word precede)

What is that?

How do we evaluate expressions that contain many operations?

In order of the operator precedence.

| Operator || Description |
lambda Lambda Expression

|c+r ||Btmlean OR |
land |Boclean AND |
|nc+t X ||Btmlean NOT |
|1'n= not in ||}Temberslﬁp tests |
is. is not [dentity tests

|-:i= <= = == = =||C0mpari50n5 |
| Bitwise OR

B Bitwise XOR |
& Bitwise AND |
|-::-::= = ||Shi&5 |
|+= - ||Add1'ticrn and subtraction |
* [% Multiplication, Division and Remainder
|+:!{= -x ||P05i1rlve= Negative |
X Bitwise NOT

|‘“‘ ||Expc+nentiatic+n |
|x.at|1ibute ||Atn’ibute reference |
Ix[index] [Subscription |
[indexindex] |Shicing |
fl arouments) Function call

|(expres.5i0n5=) ||Bindjng or tuple display |
[expressions,] List display

|{1ce3_.':datum= -} ||D~ictic+naf__.' display |
|'expreasicrn5= ||Sm'ng conversion |

The order in the table above is from lowest to highest precedence.

For example:

Important: Just like in algebra, we can modify the order of evaluation by using parenthesis.

10

The second data type:

Float: A floating point number is one that contains a decimal point. We saw an example of this above
with the “/”” operation on integers. There is an important technical difference between integers and
floats. As we saw integers can be arbitrarily long (subject to the limitations of your particular computer
hardware) and operations that yield integers are always exact. This is not the case with floats. Unlike
integers, floats have maximum and minimum sizes.

max=1.7976931348623157e+308
min=2.2250738585072014e-308

If any operation yields a float value larger than max, we have an overflow condition. Likewise, if it
yields a value smaller than min, we have an underflow condition, and the values obtained are incorrect.

Additionally, because of how floats are represented in the computer, many values can only be
approximated. Many floats are only approximate, 1/3 = 0.3333333333333333.

Operations on floats:

Like it does for the integers, Python provides the basic arithmetic operations that you would expect.
Python even defines the mod function for floats
as the % inen following examples illustrate.

File Edit Shell Debug Optiens Windows Help
Python 3.3.0 (v3.3.0:bdB8afb%0ebf2, Sep 29
D64)] on win32

Type "copyright", "credits" or "license()
>>> 123.4+56.7
180.10000000000002
>>> 123.4-56.7

66.7

>>> 123.4%56.7
6996.760000000001

>>> 123.4/56.7
2.17636684303351

>>> 123.4%56.7

10.0

>>> 123.4%1
0.4000000000000057
>>> 123.4%10
3.4000000000000057
>>> 123.0%2

246.0

>>>

Notice that operations involving two floats produce a float result. This is true even if one of the operand
is an integer. So 123.0 * 2 produces a float even though 2 is an integer.

The next two data types are not arithmetic.

11

The third data type:

String: A string is a sequence of one or more characters. An individual character is also a string in
Python. We denote a string by surrounding the character sequence by matching pairs of quotes. The
quotes are: (1) *, (2)”, (3) three of the first two — **” or “”””. Here are some examples:

File Edit Shell Debug Options Windows Help
>

>>> 'hello'

'hello!

>>> "hello"”

'hello!

>>> """hello'"!'
'hello!

>>> llllllhellollllll
'hello!

>>> hel 1o

SyntaxError: EOL while scanning string literal

e

Operations on strings:

Python provides a very rich set of string operations and functions. We will see them later on. For
now,we look at one of the most important one: “+” called concatenation.

File Edit 5hell Debug Options Windov

Python 3.3.2 (v3.3.2:d047928ae3:
tel)] on win32

Type "copyright™, "credits" or '
>»>»> "Hello'+'there'

'"Hellothere!

>»>»> "Hello'+'" here'

'"Hello here!

> "Hello'+'" '"+"everywhere™
"Hello everywhere!
Il ===

What about 3*’Hello’? Can we “multiply strings?

>»> 3*"Hello!
"HelloHelloHello!

e T T
How come?????? ... because just as 3*5 => 5+5+5 (repeated addition) likewise
3* ‘Hello’ => ‘Hello’+ ‘Hello’+ ‘Hello’

Question: What about 0* ‘Hello’ ?

12

The forth data type:

Boolean: This data type has two values: | FU€ and False (spelled just as you see them — first letter
caps and others lower case).

In addition ... certain operations yield Boolean values, specifically, comparison operations on
arithmetic and string expressions yield comparison expressions.

Arithmetic expressions are expressions that yield numbers. String expressions yield strings
(‘abc’+’def” =» ‘abedef’). We have seen these above.

What are the comparison operations provided by Python?

Comparison operations

Python provides the following comparison operations:

greater than

not equal to

greater than or equal to
less than or equal to

When we use these to compare the values of arithmetic expressions, we get a Boolean value.

774 Python 3.3.2 Shell W -

Eile Edit Shell Debug Opticns Windows Help

Python 3.3.2 (v3.3.2:d0479%28ae3f6, May 16 2013, 00:
tel)] on win3z2

Type "copyright™, "credits" or "license ()" for more
»»» 5»3

True

»»» 5<3

False

x> 5»=3

True

x> 5<=3

False

x> 5==3

False

> 5==5

True

x> 51=3

True

»»» 51=5

False

>3 |

We can also use these comparison operations on strings. The value of the comparison depends of the
lexicographic ordering (dictionary ordering — which string appears earlier or later in a dictionary) of the

strings.

13

> !
True
> !
False
>»> 'd'>'ab
True

>33 |

ju1]
[
]
I
]
m

W
o
]
)
W
]

[

%]

We can chain the comparison operations in a standard “mathematical” way and write things like:

X<=y<z where X,y,z are appropriate values.

Comparison expressions may be combined using Boolean operations:

and
or
not

The operator not yields True if its argument is false, False otherwise.

The expression x and y first evaluates x; if x is false, its value is returned; otherwise, y is
evaluated and the resulting value is returned.

The expression x or y first evaluates x; if x is true, its value is returned; otherwise, y is
evaluated and the resulting value is returned.

e
True
e
False
e
False
e
True
e
True
e
False
e 6

e 6
True

e 6
False

e 6

g e

14

http://docs.python.org/2/reference/expressions.html#not

Look at this:

==x> (J=>h)*6
&
==»> (J<h)*6
0

What is going on? How can we multiply (7>5) which evaluates to True by a number and get a number?
Same question with (7<5).

Answer:

There are four more comparison operations provided by Python:

IS
is not
in
not in

We will be using these later when we work with sequences and collections of various sorts.

Conversion between data types

Python provides a number of functions that let you convert between different data types:

float()

int()
str()

These are actually conversion constructors.

The function type(X) returns the “type’, i.e. the kind of object x is.

15

=»> 5

(8]

>=>> type (5)
<class 'int'>
=>> float(5)
5.0

>>> str(5)

!5"

=>>> 5.0

5.0

>=>> type (5.0)
<class '"float'>
>>> int (5.0)

w

>»> str(5.0)
'5.0"

»>>»> '5°"

!5"

>>> Lype('5")
<class 'str'>
>>> 1nt('5")

[%y]

=>> float('5")
5.0
>

We can compare types:

>>»> type(l)==type(1l.0)
False

>>> type(5)==type('5")
False

>>> type (1)==type(5)
True

|

Qutput
How do we get Python to output information?

We have just seen the basic “nouns” (=data types) and some operations on them, i.e. item 3 below. We
see that Python can get the computer to perform arithmetic and symbolic (e.g. string) manipulation.

Recall:

Input

Output

Memory

Arithmetic — symbolic manipulation and evaluation
Control

b~ wbhpE

What about OUtput?

Input

Output

Memory

Arithmetic — symbolic manipulation and evaluation
Control

arowopNpE

16

Question: Where can we output to?

For now, all of our output will be sent to the monitor (=screen).
How? We use the print statement.

print(‘Hello world’)

“7& Python 3.3.2 Shell
File Edit Shell Debug Options Wir

>>> print ("hello World"™)
hello World

I

e

Here is the syntax of the print statement.

>»>» print (|

|p:ri:1t (value, ..., sep=' ', end='‘n', file=sy=s.stdout, flush=False) b‘

As soon as | started to type the print command Python shows me the syntax. Here is how to read it.

First of all, print is a “function.” A function has

e A name (here — print is the function name)
¢ Followed by parenthesis

e And zero or more “arguments” that are “passed in”. If there is more than one argument, they
are separated from each other by a comma.

17

What do the arguments mean/control?

value

sep

end

file

flush

What is a default value:

Now:

Print the values 1, 2, 3 all on one line

18

Print the values 1,2 3 one per line. Do this in two ways.

More examples using print:

19

